

FAST PROTOTYPING OF EMBEDDED IMAGE PROCESSING APPLICATION ON HOMOGENOUS SYSTEM

A Model-driven approach for real-time road recognition on Homogeneous Network of Communicating Processors (HNCP)

Hanen Chenini, Loïc Sieler, Mohamed Amine Boussadi, Thierry Tixier, Jean-Pierre Dérutin, Alexis Landrault and Romuald Aufrére

Outline

- 1. Context
- Real time parallel implementation on SoPC (System on Programmable Chip)
- 3. Model-driven approach for real-time road recognition
- 4. Experiments && Conclusion

General Context embedded vision system

Embedded Vision System

- CMOS imager
- Embedded treatment
- SoC approach

PROBLEMATIC : INCREASING COMPLEXITY OF THE CONCEPTION OF SOC

1. Context

SoC design challenges

Real time parallel implementation on System on Programmable Chip

2. Real time parallel implementation on SoPC (System on Programmable Chip)

The HNCP Methodology

- Homogeneous Network of Communicating Processors on SoPC.
- hardware hardware Number of The generic architecture model Routeur Routeur links=dimension of chosen is the type MIMDDM. **HyperCube** μBlaze µBlaze Mem Mem Soft Core Soft Core The static topology choice is the hypercube. This parametrizable architecture is regular and homogeneous.
- Direct point to point links and the other using a hardware router.
- Parametrization of the HNCP via the CubeGen Framework (dimension, communication ,Size of memory, Configurations of softcore...).

road recognition approach

The steps contained in our proposed recognition process are :

- Learning phase
- Recognition phase.

road recognition approach

This method is based on recursive recognition driven by a probabilistic model of the road edges in the image.

- The model used is based on image data and camera parameters.
- Our statistical model is composed of n image parameters.
- This model is represented by a vector and its covariance matrix

$$X_{d} = \begin{pmatrix} u_{1l} \\ \vdots \\ \vdots \\ u_{nl} \end{pmatrix} \text{ and } C_{X_{d}} = \begin{pmatrix} \sigma_{1l}^{2} & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \vdots & \sigma_{1n}^{2} \end{pmatrix}$$

Learning step

Organization chart of the recognition step

Parallel implementation of recognition algorithm

Application parallelization

Parallel architecture

Experiments implementation

Road recognition Demo

Conclusion

- Some research of Institut Pascal groups focus their work in development of autonomous robot navigation.
- As a consequence, we propose :
 - Multi-processors approach for embedded systems.
 - HNCP methodology that allows to quickly prototypes different flavors of a given application
 - Prototypes designed in a very short time frame.
 - Prototypes validated by simulation and on board (FPGA, up to ~50 processors up to now)

Thank you !

