

Low-power smart imagers for vision-enabled wireless sensor networks and a case study

J. Fernández-Berni, R. Carmona-Galán, Á. Rodríguez-Vázquez Institute of Microelectronics of Seville (IMSE-CNM), CSIC - Universidad de Sevilla (Spain)

First ACM/IEEE International Workshop On Architecture of Smart Camera Clermont Ferrand, France April 5-6, 2012

Low-level image processing

↓ INSTRUCTION FLOW, ↑ COMPUTATIONAL LOAD

Conventional approach

- Analytic issues are mostly software issues
 - Brute force pattern matching used by many system developers
 - Extremely inefficient in terms of speed and power

Focal-plane array computing

- Content-aware sensing-processing
- Progressive extraction of relevant information
- Parallel and distributed processing
- Distributed memory

Focal-plane array computing

Focal-plane array computing

FLIP-Q: floorplan

J. Fernández Berni, R. Carmona Galán and L. Carranza González, "FLIP-Q: A QCIF Resolution Focal-Plane Array for Low-Power Image Processing," in IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 669–680, March 2011

FLIP-Q: elementary processing cell

- Reset transistor
- n-well/p-substrate **photodiode**
- Electronic global shutter
- Programmable block-wise image filtering and averaging
- Programmable block-wise image energy computation
- **Readout** circuitry

Physical design

Crucial aspect affecting the total area, the fill factor and the pixel pitch

The electrical design must be realized bearing in mind the subsequent physical design

Relevant issues:

Metal layers available
Full-custom routing

Make the most of the design rules

Physical design

FLIP-Q: A prototype smart imager

Technology	0.35µm CMOS 2P4M		
Vendor (Process)	Austria Microsystems (C35OPTO)		
Die size (with pads)	$7280.8\mu\mathrm{m}$ $ imes$ $5780.8\mu\mathrm{m}$		
Cell size	$34.07\mu\mathrm{m} \times 29.13\mu\mathrm{m}$		
Fill factor	6.45%		
Resolution	QCIF: 176×144 px		
Photodiode type	n-well/p-substrate		
Power supply	3.3V		
Signal range	[1.5V,2.5V]		
FPN	0.72%		
PRNU (50% signal range)	2.42%		
Sensitivity	$0.15V/(lux \cdot s)$		
Measured power consumption (worst case)	$\begin{array}{c} 5.6 \mathrm{mW@30 fps} \\ 22 \times 18 \mathrm{px} \end{array}$		
Predicted power consumption (worst case)	$\begin{array}{c} 17.6 \mathrm{mW@30 fps} \\ 176 \times 144 \mathrm{px} \end{array}$		
ADC throughput	0.11MSa/s (9µs/Sa)		
Internal clock freq. range	0.5-150MHz		

FLIP-Q: on-chip early vision

Programmable Gaussian filtering

FLIP-Q: on-chip early vision

Fully-programmable multi-resolution scene representation

Image pre-distortion for reduced kernel filtering

CSIC

Processor/Radio Board	IPR2400	Remarks
CPU		
Processor	Marvell PXA271	
SRAM Memory	256 kB	
SDRAM Memory	32MB	
FLASH Memory	32MB	
POWER CONSUMPTION		
Current Draw In Deep Sleep Mode	390 µA	
Current Draw In Active Mode	31 mA	13MHz, radio off
Current Draw In Active Mode	44 mA	13MHz, radio Tx/Rx
Current Draw In Active Mod	66 mA	104MHz, radio Tx/Rx
Radio		
Transceiver	TI CC2420	
Frequency Band (ISM)	2400.0 – 2483.5 MHz	
Data Rate	250 kb/s	
Tx Power	-24 – 0 dBm	
Rx Sensitivity	-94 dBm	
Range (line of sight)	~30 m	With integrated antenna
I/O		
USB Client (mini-B), USB Host		
UART 3x, GPIOs, I ² C, SDI0, SPI 2x, I ² S, AC97, Camera		
Power		
Battery Board	3x AAA	
USB Voltage	5.0 V	
Battery Voltage	3.2 – 4.5 V	
Li-Lon Battery Charger		
Mechanical		
Dimensions Imote2 Board	36mm x 48mm x 9mm	
Weight	12g	

CSIC

DoG-based edge detection

Resolution (px)	Clock frequency (MHz)	Frame rate	Power consumption (mA)
Full 176×144	13	0.01	38.8
	104	0.05	67.8
	208	0.08	107.8
	416	0.1	155.6
	13	0.04	38.7
Half 88×72	104	0.15	67.1
	208	0.22	105.7
	416	0.25	153.3
	13	0.12	38.1
Quarter	104	0.41	67.5
44×36	208	0.55	105.9
	416	0.59	153.1

Very low throughput due to slow GPIO ports and TinyOS latency

WASC April 2012, Clermont-Ferrand (France)

- High economic cost
- Short maintenance cycles
- Coarse grain coverage
- **Exact** location must be inferred

Vision-enabled Wireless Sensor Network

ADVANTAGES

- ✓ Robustness
- ✓ Scalability

- ✓ Reliability
- ✓ Better temporal resolution
- ✓ Simpler smoke location

DRAWBACKS

Ultra low power consumption required

CSIC ir

Value 20*s* 4*s* 30 6

Case study: early detection of forest fires

• Preliminary field tests

Parameter	Value	Parameter
T_F	1s	$T_{D_{MAX}}$
T_B	300s	T_C
$W \times H$	15 imes 12px	Δ_{MAX}
q	10%	Z_{MAX}
N_{MIN}	14	

http://www.imse-cnm.csic.es/vmote/

Original sequence

Motion detector

Our algorithm

• On-site smoke detection with *Eye-RIS* v1.2

• Field tests with Wi-FLIP

• Prescribed burning of a 95m x 20m shrub plot

- Wi-FLIP monitored all the activity for over two hours
- No false alarm triggered
- Successful smoke detection for two of the three vegetation areas explored
- Thin smoke generated from a very sparse vegetation area was not detected

CONCLUSIONS

- Early vision tasks represent a considerably heavy computational load.
- SIMD-based massively parallel mixed-signal processing takes advantage of their intrinsic characteristics to achieve high power efficiency and computational power.
- FLIP-Q: A prototype vision chip tailored for ultra low-power applications. Very competitive in the state of the art.
- Wi-FLIP: A vision-enabled Wireless Sensor Network node supported by Imote2. Current drawback: low throughput.
- Case study: **Early detection** of **forest fires**, with very good results in terms of **reliability**.

Publication Date: May 31, 2012

Thank you very much for your attention

berni@imse-cnm.csic.es

Acknowledgments

This work is financially supported by Andalusian Regional Government, through project 2006-TIC-2352, the Spanish Ministry of Economy and Competitiveness, through projects TEC 2009-11812 and IPT-2011-1625-430000, both co-funded by the EU-ERDF and by the Office of Naval Research (USA), through grant N000141110312.

