Hardware and Software architecture of a bio-inspired vision system for mobile robots

Thomas Lefebvre

ETIS / ENSEA - Université de Cergy-Pontoise - CNRS UMR 8051 95014 Cergy-Pontoise Cedex, France

Plan

- Context of the system
- Ø Vision system
- 8 Software prototype
- 4 Hardware data flow chain

- opposed architecture
- 6 a³ example
- synthesis results
- 8 current prototypes

Summary

Context of the system

- 2 Vision system
- 3 Software prototype
- 4 Hardware data flow chain

- 6 proposed architecture
- 6 a³ example
- synthesis results
- 8 current prototypes

• Autonomous navigation / facial expressions recognition / ...

- Autonomous navigation / facial expressions recognition / ...
- Bio-inspired neural-networks

- Autonomous navigation / facial expressions recognition / ...
- Bio-inspired neural-networks
- Camera \Rightarrow Vision system \Rightarrow neural network

- Autonomous navigation / facial expressions recognition / ...
- Bio-inspired neural-networks
- Camera \Rightarrow Vision system \Rightarrow neural network
- Current vision system : deported on workstations

- Autonomous navigation / facial expressions recognition / ...
- Bio-inspired neural-networks
- Camera \Rightarrow Vision system \Rightarrow neural network
- Current vision system : deported on workstations
- Goal : multi-resolution approach embedded

Goals Constraints

Goals Constraints

integration \Rightarrow Reduced power and volume available

Goals Constraints

 $\begin{array}{ll} \mbox{integration} & \Rightarrow \mbox{Reduced power and volume available} \\ \mbox{speed} & \Rightarrow 25 \mbox{ frames per second} \end{array}$

Goals Constraints

 $\begin{array}{ll} \mbox{integration} & \Rightarrow \mbox{Reduced power and volume available} \\ \mbox{speed} & \Rightarrow 25 \mbox{ frames per second} \\ \mbox{precision} & \Rightarrow 640 \times 480 \mbox{ pixels camera or more} \end{array}$

Goals Constraints

- integration \Rightarrow Reduced power and volume available
 - speed \Rightarrow 25 frames per second
 - precision \Rightarrow 640 \times 480 pixels camera or more
 - flexibility \Rightarrow Some parameters may vary at runtime

Goals Constraints

- integration \Rightarrow Reduced power and volume available
 - speed \Rightarrow 25 frames per second
 - precision \Rightarrow 640 \times 480 pixels camera or more
 - flexibility \Rightarrow Some parameters may vary at runtime

Proposed solution : FPGA - embedded processor and hardware IPs

Design flow

HW/SW architecture of a bio-inspired robotic vision system T. Lefebvre

Summary

- Context of the system
- 2 Vision system
- 3 Software prototype
- 4 Hardware data flow chain

- **5** proposed architecture
- 6 a³ example
- synthesis results
- 8 current prototypes

Gradient, Gaussian filtering, subsampling

Difference of Gaussians (DoG)

Keypoint search

HW/SW architecture of a bio-inspired robotic vision system T. Lefebvre 5 avril 2012 10 / 35

Log-polar transform

HW/SW architecture of a bio-inspired robotic vision system

5 avril 2012

11 / 35

Log-polar transform

HW/SW architecture of a bio-inspired robotic vision system

5 avril 2012

11 / 35

Log-polar transform

HW/SW architecture of a bio-inspired robotic vision system

5 avril 2012

11 / 35

Summary

- Context of the system
- 2 Vision system
- 3 Software prototype
- 4 Hardware data flow chain

- **5** proposed architecture
- 6 a³ example
- synthesis results
- 8 current prototypes

HW/SW architecture of a bio-inspired robotic vision system

T. Lefebvre

embedded - 1GHz Cortex A8, 256MB RAM 192 \times 144 pixels frames

embedded - 1GHz Cortex A8, 256MB RAM 192 \times 144 pixels frames

	Total execution	Percentage
Function	time per frame	of the total
Gradient	11.1 ms	5.4%
Gaussian filtering	145.7 ms	70.7%
Subsampling	1.3 ms	6.3%
DoG	9.1 ms	4.4%
Keypoint search	27.3 ms	13.3%
Neighborhoods	11.5 ms	5.6%
Total	205.9 ms	100%

embedded - 1GHz Cortex A8, 256MB RAM 192 \times 144 pixels frames

	Total execution	Percentage
Function	time per frame	of the total
Gradient	11.1 ms	5.4%
Gaussian filtering	145.7 ms	70.7%
Subsampling	1.3 ms	6.3%
DoG	9.1 ms	4.4%
Keypoint search	27.3 ms	13.3%
Neighborhoods	11.5 ms	5.6%
Total	205.9 ms	100%

 $\text{205.9 ms} \Rightarrow \text{4.85 fps}$

embedded - 1GHz Cortex A8, 256MB RAM 192 \times 144 pixels frames

 $\text{205.9 ms} \Rightarrow \text{4.85 fps}$

laptop - 1.66GHz Intel Core Duo, 2GB RAM :

 $39.4 \text{ ms} \Rightarrow 25.38 \text{ fps}$

What about 640×480 pixels frames ? HD video ?

Summary

- Context of the system
- 2 Vision system
- 3 Software prototype
- 4 Hardware data flow chain

- 6 proposed architecture
- 6 a³ example
- synthesis results
- 8 current prototypes

Pixel flow

HW/SW architecture of a bio-inspired robotic vision system

Pixel flow

Modular, generic shell \Rightarrow greater flexibility

HW/SW architecture of a bio-inspired robotic vision system

Summary

- Context of the system
- 2 Vision system
- 3 Software prototype
- 4 Hardware data flow chain

6 proposed architecture

- 6 a³ example
- synthesis results
- 8 current prototypes

global system view

HW/SW architecture of a bio-inspired robotic vision system

hardware acceleration

hardware acceleration

• The IPs produce one grayscale pixel per clock cycle

hardware acceleration

- The IPs produce one grayscale pixel per clock cycle
- 1920 \times 1080 pixels : 2.07 M pixels
hardware acceleration

- The IPs produce one grayscale pixel per clock cycle
- 1920 × 1080 pixels : 2.07 M pixels
- 25 full-HD fps \Rightarrow 51.84 M pixels per second

hardware acceleration

- The IPs produce one grayscale pixel per clock cycle
- 1920×1080 pixels : 2.07 M pixels
- 25 full-HD fps \Rightarrow 51.84 M pixels per second
- 100 MHz OK for the proposed IPs

hardware acceleration

- The IPs produce one grayscale pixel per clock cycle
- 1920×1080 pixels : 2.07 M pixels
- 25 full-HD fps \Rightarrow 51.84 M pixels per second
- 100 MHz OK for the proposed IPs
- The rest depends on :
 - the embedded processor (Features + Ethernet)
 - the camera interface (RAW ? \Rightarrow grayscale)

Summary

- Context of the system
- 2 Vision system
- 3 Software prototype
- 4 Hardware data flow chain

- 6 proposed architecture
- 6 a³ example
- synthesis results
- 8 current prototypes

2 solutions for Gaussian filtering :

2d window convolution

2 solutions for Gaussian filtering :

 2d window convolution large number of multiplications (w²_{window})

2 solutions for Gaussian filtering :

- 2d window convolution large number of multiplications (w²_{window})
- 2 vertical + horizontal 1d windows convolutions

2 solutions for Gaussian filtering :

- 2d window convolution large number of multiplications (w²_{window})
- 2 vertical + horizontal 1d windows convolutions fewer multiplications $(2 \times w_{window})$

 $a^3 example$

Traditional architecture :

MACC convolution operators :

- Very low latency for the sum of products
- Regular structure, generic code easier to write

MACC-based architecture :

HW/SW architecture of a bio-inspired robotic vision system

 $a^3 example$

1D vertical+horizontal :

 $a^3 example$

1D vertical+horizontal :

Summary

- Context of the system
- 2 Vision system
- 3 Software prototype
- 4 Hardware data flow chain

- 6 proposed architecture
- 6 a³ example
- synthesis results
- 8 current prototypes

HW/SW architecture of a bio-inspired robotic vision system

T. Lefebvre

5 avril 2012

25 / 35

Synthesized for Xilinx Virtex 6 family (equivalent results for Kintex 7 family)

Synthesized for Xilinx Virtex 6 family (equivalent results for Kintex 7 family)

IP	Registers		LUTs		36k BRAM		DSP48E1	
Gradient	160	<1%	281	<1%	1	<1%	0	
Gaussian filter	5639	8%	5494	7%	21	15%	91	100%
Subsample	288	<1%	259	<1%	2	2%	0	
DoG	192	<1%	624	<1%	6	4%	0	
Keypoint search	58352	81%	63550	77%	106	78%	0	
Sorting	7032	10%	12048	15%	0		0	
Total	71663	100%	82256	100%	136	100%	91	100%

26/35

Synthesized for Xilinx Virtex 6 family (equivalent results for Kintex 7 family)

IP	Regi	sters	LUTs 36k BRAM		BRAM	DSP48E1		
Gradient	160	<1%	281	<1%	1	<1%	0	
Gaussian filter	5639	8%	5494	7%	21	15%	91	100%
Subsample	288	<1%	259	<1%	2	2%	0	
DoG	192	<1%	624	<1%	6	4%	0	
Keypoint search	58352	81%	63550	77%	106	78%	0	
Sorting	7032	10%	12048	15%	0		0	
Total	71663	100%	82256	100%	136	100%	91	100%

Chip	Registers	LUTs	36k BRAM	DSP48E1
	301440	150720	416	768
Virtex 6 LX240T FPGA	24%	55%	33%	12%
	445200	222600	715	1440
Kintex 7 K355T FPGA	16%	37%	19%	6%
	448000	224000	545	900
Zynq Z-7045 (Kintex 7 FPGA)	16%	37%	25%	10%

HW/SW architecture of a bio-inspired robotic vision system

Gaussian Filter IP - 4 parameters :

• Bus width of pixels and coefficients

Gaussian Filter IP - 4 parameters :

- Bus width of pixels and coefficients
- Width of coefficient window

Gaussian Filter IP - 4 parameters :

- Bus width of pixels and coefficients
- Width of coefficient window
- σ coefficient

number of coefficients per window / σ value

HW/SW architecture of a bio-inspired robotic vision system

HW/SW architecture of a bio-inspired robotic vision system

number of coefficients per window / σ value

HW/SW architecture of a bio-inspired robotic vision system

Bus width : pixels / coefficients

HW/SW architecture of a bio-inspired robotic vision system

Bus width : pixels / coefficients 7 32 bits 10 bits ----*----6 36kb BRAM blocks 5 4 3 2 10 15 20 Pixel bus width (bits)

HW/SW architecture of a bio-inspired robotic vision system

Bus width : pixels / coefficients

HW/SW architecture of a bio-inspired robotic vision system

Keypoint search - 2 IP parameters :

Bus width of pixels

Keypoint search - 2 IP parameters :

- Bus width of pixels
- Search radius

Keypoint search - 2 IP parameters :

- Bus width of pixels
- Search radius
- 1 pixel within the search radius \Rightarrow 1 comparator

Keypoint search - 2 IP parameters :

- Bus width of pixels
- Search radius

1 pixel within the search radius \Rightarrow 1 comparator R=20 \Rightarrow 1256 comparators

HW/SW architecture of a bio-inspired robotic vision system

Pixel bus width / search radius

HW/SW architecture of a bio-inspired robotic vision system

Summary

- Context of the system
- 2 Vision system
- 3 Software prototype
- 4 Hardware data flow chain

- **5** proposed architecture
- 6 a³ example
- synthesis results
- 8 current prototypes

Embedded platform

Validation of the integration in the robot

HW/SW architecture of a bio-inspired robotic vision system | T. Lefebvre | 5 avril 2012 | 30 / 35

Embedded platform

Validation of the integration in the robot Neural network \Leftrightarrow Vision system (through Ethernet)

current prototypes

Embedded platform

Validation of the integration in the robot Neural network ⇔ Vision system (through Ethernet) Only one spatial frequency band (small FPGA)

current prototypes

Embedded platform

Validation of the integration in the robot Neural network ⇔ Vision system (through Ethernet) Only one spatial frequency band (small FPGA) 9 fps (320 × 240 pixels), limited by the NIOS II networking

Embedded platform

HW/SW architecture of a bio-inspired robotic vision system

5 avril 2012

Embedded platform

Vision system \Rightarrow screen : VGA through SDRAM (Terasic IPs)

$\label{eq:Vision system} \begin{array}{l} \Rightarrow \text{ screen}: \text{VGA through SDRAM (Terasic IPs)} \\ \text{Only one spatial frequency band} \end{array}$

Vision system \Rightarrow screen : VGA through SDRAM (Terasic IPs) Only one spatial frequency band No keypoint search (no image to display after the DoGs)

Vision system \Rightarrow screen : VGA through SDRAM (Terasic IPs) Only one spatial frequency band No keypoint search (no image to display after the DoGs) 18 fps (640 × 480 pixels), limited by the camera module

current prototypes

Demonstration platform

Synthesis results (Embedded PF)

Terasic DE2-115 board - Cyclone IV 4CE115

Images : Grayscale 320×240 pixels Parameters : pixels on 16 bits, convolution coefficients on 16 bits, R=20, convolution windows : 7 coefficients

Logic Elements : 72k (on 114k - 63%) FPGA Memory : 1956kb (on 3981kb - 49%) 9-bit multipliers : 4 (on 532 - <1%)

Conclusion

- The proposed architecture matches all the constraints of the system (time, volume, energy)
- Hardware IPs allow for the processing of Full-HD at over 50 fps
- The main IPs have been profiled in regard to their parameters
- IP genericity permits to change these parameters to aim for optimal performance for various FPGAs

Future works

- Implement the full system (multi-resolution, decent frame size) on a camera/FPGA couple
- Validate the behavior of the system and tune the parameters for each use case
- Design and implement log-polar transform as hardware IPs

Thanks for your attention. Do you have any question?

HW/SW architecture of a bio-inspired robotic vision system | T. Lefebvre | 5 avril 2012 (35 / 35