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Context and motivations

® Generalisation of heterogenous embedded systems
® hw +sw (typically : CPU + FPGAs)

® Large opportunities for performance improvements
(massive parallelism, close-to-sensor processing, ...)
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Context and motivations

® This raises challenging issues for the designer

® Programming concepts, techniques and tools are still
very different for software and hardware

® The very notion of “program” is quite different for a
software programmer and a hardware “designer” !
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The big issue

® Most software programmers find it hard to make
use of hardware reconfigurable (“programmable”)
devices

® Some reasons are “technical” (tools,...)

® .. but the key issue has to do with the respective
programming models
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Programming models

® |n most of (in not all) software programming models,
time is implicit
® this is possible because the model is sequential
® Ex:x := x+1; x := x*2;

it does not really matter when (at what date), the second
instruction is executed; the only thing that matters is that it
is carried out dfter the first one)

® Variation in the programming model (functional,
object-oriented, ...) does not fundamentally change
this
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Programming models

® By contrast, in hardware “programming” models, time (and
the related concept of synchronisation) is generally explicit

® Ex:VHDL:
process(clk) begin g <= '0’; r <= gt+l;... end;
® Moreover, separation between data and control signals

® in particular for systems operating “on the fly” (stream
processing applications)

® does not exist in software programming !

® This is what makes hardware programming
hard for software programmers !
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The big issue

How to make “hardware programming”
acceptable for “software’” programmers !
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The big issue :*’standard” answer

® Make hardware description languages closer to
“software” programming languages

= C-like HDLs (SystemC, HandelC, ...
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C-like HDLs ?

... are not the panacea !

* Some concepts of the sequential / imperative programming
model do no map easily/efficiently into hardware (ex:
random memory access)

* Some constructs of the “source” language must be avoided

e Ultimately requires knowledge on hardware
programming...

... Which is precisely what we want to avoid !

* Require complex (and hence hard to prove correct)
transformations to be implemented
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Why C-like HDLs fail

® The gap between the specification and the
implementation is too large

® esp.:control signals

® making them explicit at the specification level breaks
the abstraction barrier

® .. butinferring them from a high-level C description
is hard !
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Reducing the gap

® What is needed is an adequate programming
model

® Offering an homogeneous view of control and
data values / signals

® .. thus supporting “software oriented”
descriptions of stream-processing applications

® ..but also leading to efficient hardware
implementations
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Finding an adequate
programming model

® Pragmatic (bottom-up) approach !

® Q : What can be easily / efficiently implemented in
hardware ?

® A (partial) :

® combinational logic
® FSMs
® FIFO based communications

® Can we base a “software-programmer-friendly”
programming language on this ?
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The basic building blocks

® Combinational blocks can implement all pure (state-
less) computations

® FIFO-based communication fits nicely within data-
flow / actor based programming models

® these models are highly intuitive (and familiar to
programmers - esp. in DSP area)

® control signals can be embedded as special data tokens
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Dataflow model

® Very old idea !

® An application = a collection of computing units (actors) exchanging
tokens through unidirectional, buffered links (FIFOs)

® For each actor, a set of firing rules specifies when it consumes input
tokens and produces output tokens

, —>
_>
s o
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From to concepts to the language

® Need a formalism to describe / specify
® the network topology
® the behavior of actors

® what tokens contain / represent
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Describing networks

=> Textual (functional) description

>[I
)

net (x,vy) = Al i
net = A2 x '
net = A3y net diamond £ g b k x =
net o = A4 (x1, yl) let x,y = £ i in

or k (g x, hy)

net o = diamond Al A2 A3 A4 i

net (x,y) = Al i
net o = A4 (A2 x, A3 y)

> Consistency can be checked using type-checking
> Reusable graph patterns can be encapsulated as higher-order functions




Describing actor behavior
—> Generalized Finite State Machines

® Borrowed from the Hume language
® Behavior described a a set of transition rules

® Activation of rules based on pattern-matching

6 4 actor switch
s . in (il : int, )//Os

i2 : int)
out (o : int)
(var s : (Left,Right) = Left) Local var
Crules (s,11,i2) » (o,s) )Ruleformat

| Left, v, _ » v, Transition
| Right, _, > v, Left rules
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Generalized FSMs

® Cleanly separate computation from communication
concerns

® Trade-off between expressivity and predictabily
governed by the computation language used for
describing actions (from purely combinational fns to
recursive or higher-order fns) [inspired from Hume
approach]
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Data representation

® Key issue for stream-processing applications

® Synchronisation problems are partly solved by
using FIFOs to connect actors ...

® .. but we still need to represent the structure of the
processed data

® ex: detect and ina
stream of images
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Data representation

® Two categories of tokens
e data tokens (integers, booleans, pixels, ...)

e control tokens (start_of _structure, end_of_structure)

Example

102 30 5 90

31331802 £ << 102305090 ><3538012>< 905344 110 > < 11 82 45 100 > >

90 | 53 | 44 [ 110

11 | 82 | 45 |100

image

> Can be used to represent arbitrarily structured data (remember Lisp ?)
> No global control / synchronisation signals needed

> Naturally supports pipelined execution
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Data representation

> Functional representation of temporal operation

Example : |-pixel delay

102 30 | 5 | 90 0 102 30| 5

3 [ 538012 0| 3 |53]s0
—

90 | 53 | 44 |110 0 | 90| 53] 44

11| 82 | 45 |100 0 11 | 82 | 45

< < 102 30 5 90 > < 3 53 80 12 > < 90 53 44 110 > < 11 82 45 100 > >

&

< <0102 30 5><035380><200905344>< 0 11 82 45 > >
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Data representation and actor behavior
< < 102 30 5 90 > < 3 53 80 12 > < 90 53 44 110 > < 11 82 45 100 > >
{+dip

<< 0102 305 >< 0 35380 ><2009053 144 >< 0 11 82 45 > >

actor dlp
in (i:signed<8> dc)
out (c:signed<8> dc)

var s : {S0,S1,S2} = SO “ L= sor
. o := EOF o := SoF
var z : signed<8> I

rules (s, i, z) -> (s, 0,2)

| (so, SoF, ) -> (s1, SoF, ) i = som

| (81, EoF, _) -> (SO, EoF, ) 0 :=SoL ; z := 0 :jjﬁ;
| (s1, SoL, _) -> (S2, SoL, 0) ,

| (s2, Data v, z) -> (S2, Data z, V) o mzizimv ‘e

| (s2, EoL, ) -> (S1, SoL, )
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A sample Caph program

/function f abs x = \GI bal val
if x < 0 then 0-x else x 0Dal values
Signed<8> - Signed<8>; wd:signed<8> dc wl:signed<8> dc
wo6:signed<8> de w3:signed<8>dc | 3:dll
\Fonstant threshold = 40; ) Ve N
- ~ actor thr (k:unsigned<8>)
actor dilp () Actors in (a:unsigned<8> dc)
out (c:unsigned<1l> dc)
actor dll () ... FolEs a = 6
'< > '<
actor add () ... | , . . ,
| 'p -> if p > k then 'l else '0
actor asub () | "> > >
N %

\actor thr (t:signed<8>) .. 110<
p

stream i:signed<8> dc from "dev:cam0";
stream o:signed<8> dc to "dev:monl";

(net g = add (asub(i, dlp i), asub(i, dll i));
net o = thr [threshold] g;
-

Network description

w10:signed<8> dc

The Caph toolset

® Graph visualizer : .dot
format

® Reference
interpreter :

Source II
Code

Front-end (Parsing,
type checking)

Abstract
Syntax Tree

Graph

Visualizer

Reference
interpreter

® based on the fully
formalized semantics

® tracing, profiling and

Compiler
p Elaboration

Intermediate
Representation

Y \

debugging ——

Back-end

VHDL
Back-end

® Comepiler:

® claboration of a
target-independant IR

® specialized backends
(SystemC,VHDL)
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.cpp, |h II
C++ Compiler

Back Annotations

(Fifo size)
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J.Sérot/F.Berry/S.Ahmed

FPGA




Elaboration

® Three steps
|. network generation
2. actor translation
3. SystemC/VHDL transcription

® Only a quick overview here (see papers & LRM)
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|. Network generation

® Using abstract interpretation net y = £ ( g x)
of the network 3
description, viewed as a

functional program
® Each application of a w
function bound to an actor

inserts an instance of this
actor into the graph

® Each functional
dependency inserts a
channel

full empty
<t >
din dout
® channels are then g > > f
. . d
instanciated as FIFOs LI =2
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ll. Actor translation

Set of transition rules = FSM + operations (FSMD)

Example : suml :
actor suml ()
in (a: int dc)
out (c: int)
var st: {S0,S1}=S0
var s : int
rules st,a,s-> st,c,s
so, ‘<, _=>s1, , 0
| s1, ‘v, s = sS1, _, s+v
| s1, >, s = S0, s,
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lILVHDL Transcription

actor suml ()
in (a: int dc)
out (c: int)
var st: {S0,S1}=S0
var s : int
rules st,a,s-> st,c,s
so0,'<,_ = s1, ,0
| s1,'v,s = s1, ,s+v
| s1,'>,s & s0,s,_
\ AN

entity sum act is
port (
a_empty: in std_logic;
a: in std_logic_vector(9 downto 0);
a_rd: out std logic;
c_full: in std_logic;
c: out std_logic_vector (15 downto 0);
c_wr: out std logic;
clock: in std_logic;
reset: in std_logic
)i

end sum_act;

architecture FSM of sum act is
type t_state is (S0,S01,51,S11,S12);
begin
process ( , reset)
variable s : std_logic_vector (15 downto 0);
variable st : t_state;
logic_vector (7 downto 0);

WASVériZa(k))ﬁeZ,v :Clsetrd‘ ont-Ferrand

begin

if (reset='0"') then
st := S0; a_rd <=

Example

'0'; c_wr <= '0";

elsif rising edge(clock) then

case state is

when S0 =>
if a_empty='0"
ard<='1l";

and is_sos(a) then

st := S501;
s := conv_std_logic_vector(0,15);
end if;

when S01 =>
ard <= '0";

when S1 =>
if a_empty='0"

ard<="'l";
s := s+v; st
end if;

if a_empty='0"
ard<='1l";
c_wr <= '1";

end if;

when S11 =>
ard<='0";

when S12 =>
ard<='0";
end case;

end if;
end process;

end FSM;

state <= S1;

and is_data(a) then
v := data_from(a);
:= S11;

and is_eos(a) then
c := s;

st := S12;
st := S1;
cwr <= '0'; st := S0;
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A realistic example

Real-time tracking of moving objects in a digital video stream

|. thresholding a difference
image btw two successive
frames to get a binary
image

2. thresholding the horizontal
projection to get horizontal
bands containing moving
objects

3. computing and analysing
vertical projection on each
band to get position of
moving objects
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A realistic example

type byte = unsigned<8>

type bit = unsigned<1>

const kl = 30 -- for binary image
const k2 = 1200 -- for hor. projection
const k3 = 900 -- for vert. projection

actor asub () ..

actor dlf () ...

actor thr (t:byte)

actor hproj () .

actor vwin ()

actor vproj () ...

actor peaks (t:byte) ...
actor win () ...

stream i : byte dc from "camera:0"
stream o : byte dc to "display:0"

net diff im = asub (i, dlf i)
net bin im = thr k1l diff im
net hp = thr k2 (hproj bin_im)
net hband = vwin (hp, bin im)
net vp = vproj hband

net o = win (peaks k3 vp, 1)
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A realistic example

® |Implemented on a smart-camera (!) platform embedding
a Stratix EP1S60 FPGA

® Synthesis of VHDL code produced by Caph compiler
using the Quartus toolset

® [nterfacing to i/o devices via dedicated VHDL processes

® FIFO are implemented with LEs, on-chip or external
RAM banks depending on their size

® this size is currently estimated by running an profiled version
of the code generated by the SystemC backend
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A realistic example

® FPGA utilisation :

® 3550 LEs (6%)

® |7 kbits SRAM

® 512 kB externam RAM (one-frame delay)
® Fmax = |50 MHz

® Correctly processes streams of 512 x 512 x
8 bits images at |15 FPS
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Conclusion

® A new domain-specific language for programming stream-
processing applications on FPGAs

® Substantial increase in abstraction level compared to
VHDL/Verilog

® ... without significant performance penalty
® Fully formalized approach (see LRM)

® complete formal semantics for the language

® formalized and tractable compilation path

® Toolset and manual available at

http://dream.univ-bpclermont.fr/index.php/en/caph-v-13.html
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Conclusion

e Still a prototype !
® Work under progress :

- breaking complex computations into multiple clock
cycles (important issue !)

- static (compile-time) estimation of FIFO sizes

- more complex applications (ex : MPEG decoder/
encoder)

e Test and feedback welcome !
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One last thing ...

® What does CAPH stands for ?
e CaphAin’t just Plain HDL

® (3 Cassiopeia
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