CAPH :A high-level actor-based
language for programming FPGAs

. Sérot, F. Berry, S. Ahmed
Institut Pascal, UMR 6602 Université Blaise Pascal /| CNRS
Clermont-Ferrand, France

WASC 2012 Apr 5-5 2012, Clermont-Ferrand

Context and motivations

® Generalisation of heterogenous embedded systems
® hw +sw (typically : CPU + FPGAs)

® Large opportunities for performance improvements
(massive parallelism, close-to-sensor processing, ...)

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Context and motivations

® This raises challenging issues for the designer

® Programming concepts, techniques and tools are still
very different for software and hardware

® The very notion of “program” is quite different for a
software programmer and a hardware “designer” !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

The big issue

® Most software programmers find it hard to make
use of hardware reconfigurable (“programmable”)
devices

® Some reasons are “technical” (tools,...)

® .. but the key issue has to do with the respective
programming models

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Programming models

® |n most of (in not all) software programming models,
time is implicit
® this is possible because the model is sequential
® Ex:x := x+1; x := x*2;

it does not really matter when (at what date), the second
instruction is executed; the only thing that matters is that it
is carried out dfter the first one)

® Variation in the programming model (functional,
object-oriented, ...) does not fundamentally change
this

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Programming models

® By contrast, in hardware “programming” models, time (and
the related concept of synchronisation) is generally explicit

® Ex:VHDL:
process(clk) begin g <= '0’; r <= gt+l;... end;
® Moreover, separation between data and control signals

® in particular for systems operating “on the fly” (stream
processing applications)

® does not exist in software programming !

® This is what makes hardware programming
hard for software programmers !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

The big issue

How to make “hardware programming”
acceptable for “software’” programmers !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

€6y

The big issue :*’standard” answer

® Make hardware description languages closer to
“software” programming languages

= C-like HDLs (SystemC, HandelC, ...

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

C-like HDLs ?

... are not the panacea !

* Some concepts of the sequential / imperative programming
model do no map easily/efficiently into hardware (ex:
random memory access)

* Some constructs of the “source” language must be avoided

e Ultimately requires knowledge on hardware
programming...

... Which is precisely what we want to avoid !

* Require complex (and hence hard to prove correct)
transformations to be implemented

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Why C-like HDLs fail

® The gap between the specification and the
implementation is too large

® esp.:control signals

® making them explicit at the specification level breaks
the abstraction barrier

® .. butinferring them from a high-level C description
is hard !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Reducing the gap

® What is needed is an adequate programming
model

® Offering an homogeneous view of control and
data values / signals

® .. thus supporting “software oriented”
descriptions of stream-processing applications

® ..but also leading to efficient hardware
implementations

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Finding an adequate
programming model

® Pragmatic (bottom-up) approach !

® Q : What can be easily / efficiently implemented in
hardware ?

® A (partial) :

® combinational logic
® FSMs
® FIFO based communications

® Can we base a “software-programmer-friendly”
programming language on this ?

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

The basic building blocks

® Combinational blocks can implement all pure (state-
less) computations

® FIFO-based communication fits nicely within data-
flow / actor based programming models

® these models are highly intuitive (and familiar to
programmers - esp. in DSP area)

® control signals can be embedded as special data tokens

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Dataflow model

® Very old idea !

® An application = a collection of computing units (actors) exchanging
tokens through unidirectional, buffered links (FIFOs)

® For each actor, a set of firing rules specifies when it consumes input
tokens and produces output tokens

, —>
_>
s o

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

From to concepts to the language

® Need a formalism to describe / specify
® the network topology
® the behavior of actors

® what tokens contain / represent

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Describing networks

=> Textual (functional) description

>[I
)

net (x,vy) = Al i
net = A2 x '
net = A3y net diamond £ g b k x =
net o = A4 (x1, yl) let x,y = £ i in

or k (g x, hy)

net o = diamond Al A2 A3 A4 i

net (x,y) = Al i
net o = A4 (A2 x, A3 y)

> Consistency can be checked using type-checking
> Reusable graph patterns can be encapsulated as higher-order functions

Describing actor behavior
—> Generalized Finite State Machines

® Borrowed from the Hume language
® Behavior described a a set of transition rules

® Activation of rules based on pattern-matching

6 4 actor switch
s . in (il : int,)//Os

i2 : int)
out (o : int)
(var s : (Left,Right) = Left) Local var
Crules (s,11,i2) » (o,s))Ruleformat

| Left, v, _ » v, Transition
| Right, _, > v, Left rules

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Generalized FSMs

® Cleanly separate computation from communication
concerns

® Trade-off between expressivity and predictabily
governed by the computation language used for
describing actions (from purely combinational fns to
recursive or higher-order fns) [inspired from Hume
approach]

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Data representation

® Key issue for stream-processing applications

® Synchronisation problems are partly solved by
using FIFOs to connect actors ...

® .. but we still need to represent the structure of the
processed data

® ex: detect and ina
stream of images

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Data representation

® Two categories of tokens
e data tokens (integers, booleans, pixels, ...)

e control tokens (start_of _structure, end_of_structure)

Example

102 30 5 90

31331802 £ << 102305090 ><3538012>< 905344 110 > < 11 82 45 100 > >

90 | 53 | 44 [110

11 | 82 | 45 |100

image

> Can be used to represent arbitrarily structured data (remember Lisp ?)
> No global control / synchronisation signals needed

> Naturally supports pipelined execution

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Data representation

> Functional representation of temporal operation

Example : |-pixel delay

102 30 | 5 | 90 0 102 30| 5

3 [538012 0| 3 |53]s0
—

90 | 53 | 44 |110 0 | 90| 53] 44

11| 82 | 45 |100 0 11 | 82 | 45

< < 102 30 5 90 > < 3 53 80 12 > < 90 53 44 110 > < 11 82 45 100 > >

&

< <0102 30 5><035380><200905344>< 0 11 82 45 > >

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Data representation and actor behavior
< < 102 30 5 90 > < 3 53 80 12 > < 90 53 44 110 > < 11 82 45 100 > >
{+dip

<< 0102 305 >< 0 35380 ><2009053 144 >< 0 11 82 45 > >

actor dlp
in (i:signed<8> dc)
out (c:signed<8> dc)

var s : {S0,S1,S2} = SO “ L= sor
. o := EOF o := SoF
var z : signed<8> I

rules (s, i, z) -> (s, 0,2)

| (so, SoF,) -> (s1, SoF,) i = som

| (81, EoF, _) -> (SO, EoF,) 0 :=SoL ; z := 0 :jjﬁ;
| (s1, SoL, _) -> (S2, SoL, 0) ,

| (s2, Data v, z) -> (S2, Data z, V) o mzizimv ‘e

| (s2, EoL,) -> (S1, SoL,)

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

A sample Caph program

/function f abs x = \GI bal val
if x < 0 then 0-x else x 0Dal values
Signed<8> - Signed<8>; wd:signed<8> dc wl:signed<8> dc
wo6:signed<8> de w3:signed<8>dc | 3:dll
\Fonstant threshold = 40;) Ve N
- ~ actor thr (k:unsigned<8>)
actor dilp () Actors in (a:unsigned<8> dc)
out (c:unsigned<1l> dc)
actor dll () ... FolEs a = 6
'< > '<
actor add () ... | , . . ,
| 'p -> if p > k then 'l else '0
actor asub () | "> > >
N %

\actor thr (t:signed<8>) .. 110<
p

stream i:signed<8> dc from "dev:cam0";
stream o:signed<8> dc to "dev:monl";

(net g = add (asub(i, dlp i), asub(i, dll i));
net o = thr [threshold] g;
-

Network description

w10:signed<8> dc

The Caph toolset

® Graph visualizer : .dot
format

® Reference
interpreter :

Source II
Code

Front-end (Parsing,
type checking)

Abstract
Syntax Tree

Graph

Visualizer

Reference
interpreter

® based on the fully
formalized semantics

® tracing, profiling and

Compiler
p Elaboration

Intermediate
Representation

Y \

debugging ——

Back-end

VHDL
Back-end

® Comepiler:

® claboration of a
target-independant IR

® specialized backends
(SystemC,VHDL)

WASC 2012, Clermont-Ferrand

I
.cpp, |h II
C++ Compiler

Back Annotations

(Fifo size)

] -
IITTT0T

J.Sérot/F.Berry/S.Ahmed

FPGA

Elaboration

® Three steps
|. network generation
2. actor translation
3. SystemC/VHDL transcription

® Only a quick overview here (see papers & LRM)

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

|. Network generation

® Using abstract interpretation net y = £ (g x)
of the network 3
description, viewed as a

functional program
® Each application of a w
function bound to an actor

inserts an instance of this
actor into the graph

® Each functional
dependency inserts a
channel

full empty
<t >
din dout
® channels are then g > > f
. . d
instanciated as FIFOs LI =2

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

A

ll. Actor translation

Set of transition rules = FSM + operations (FSMD)

Example : suml :
actor suml ()
in (a: int dc)
out (c: int)
var st: {S0,S1}=S0
var s : int
rules st,a,s-> st,c,s
so, ‘<, _=>s1, , 0
| s1, ‘v, s = sS1, _, s+v
| s1, >, s = S0, s,

WASC 2012, Clermont-Ferrand

<123>=26

J.Sérot/F.Berry/S.Ahmed

lILVHDL Transcription

actor suml ()
in (a: int dc)
out (c: int)
var st: {S0,S1}=S0
var s : int
rules st,a,s-> st,c,s
so0,'<,_ = s1, ,0
| s1,'v,s = s1, ,s+v
| s1,'>,s & s0,s,_
\ AN

entity sum act is
port (
a_empty: in std_logic;
a: in std_logic_vector(9 downto 0);
a_rd: out std logic;
c_full: in std_logic;
c: out std_logic_vector (15 downto 0);
c_wr: out std logic;
clock: in std_logic;
reset: in std_logic
)i

end sum_act;

architecture FSM of sum act is
type t_state is (S0,S01,51,S11,S12);
begin
process (, reset)
variable s : std_logic_vector (15 downto 0);
variable st : t_state;
logic_vector (7 downto 0);

WASVériZa(k))ﬁeZ,v :Clsetrd‘ ont-Ferrand

begin

if (reset='0"') then
st := S0; a_rd <=

Example

'0'; c_wr <= '0";

elsif rising edge(clock) then

case state is

when S0 =>
if a_empty='0"
ard<='1l";

and is_sos(a) then

st := S501;
s := conv_std_logic_vector(0,15);
end if;

when S01 =>
ard <= '0";

when S1 =>
if a_empty='0"

ard<="'l";
s := s+v; st
end if;

if a_empty='0"
ard<='1l";
c_wr <= '1";

end if;

when S11 =>
ard<='0";

when S12 =>
ard<='0";
end case;

end if;
end process;

end FSM;

state <= S1;

and is_data(a) then
v := data_from(a);
:= S11;

and is_eos(a) then
c := s;

st := S12;
st := S1;
cwr <= '0'; st := S0;

J.Sérot/F.Berry/S.Ahmed

A realistic example

Real-time tracking of moving objects in a digital video stream

|. thresholding a difference
image btw two successive
frames to get a binary
image

2. thresholding the horizontal
projection to get horizontal
bands containing moving
objects

3. computing and analysing
vertical projection on each
band to get position of
moving objects

WASC 2012, Clermont-Ferrand

A realistic example

type byte = unsigned<8>

type bit = unsigned<1>

const kl = 30 -- for binary image
const k2 = 1200 -- for hor. projection
const k3 = 900 -- for vert. projection

actor asub () ..

actor dlf () ...

actor thr (t:byte)

actor hproj () .

actor vwin ()

actor vproj () ...

actor peaks (t:byte) ...
actor win () ...

stream i : byte dc from "camera:0"
stream o : byte dc to "display:0"

net diff im = asub (i, dlf i)
net bin im = thr k1l diff im
net hp = thr k2 (hproj bin_im)
net hband = vwin (hp, bin im)
net vp = vproj hband

net o = win (peaks k3 vp, 1)

WASC 2012, Clermont-Ferrand

J.Sérot/F.Berry/S.Ahmed

A realistic example

® |Implemented on a smart-camera (!) platform embedding
a Stratix EP1S60 FPGA

® Synthesis of VHDL code produced by Caph compiler
using the Quartus toolset

® [nterfacing to i/o devices via dedicated VHDL processes

® FIFO are implemented with LEs, on-chip or external
RAM banks depending on their size

® this size is currently estimated by running an profiled version
of the code generated by the SystemC backend

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

A realistic example

® FPGA utilisation :

® 3550 LEs (6%)

® |7 kbits SRAM

® 512 kB externam RAM (one-frame delay)
® Fmax = |50 MHz

® Correctly processes streams of 512 x 512 x
8 bits images at |15 FPS

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Conclusion

® A new domain-specific language for programming stream-
processing applications on FPGAs

® Substantial increase in abstraction level compared to
VHDL/Verilog

® ... without significant performance penalty
® Fully formalized approach (see LRM)

® complete formal semantics for the language

® formalized and tractable compilation path

® Toolset and manual available at

http://dream.univ-bpclermont.fr/index.php/en/caph-v-13.html

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Conclusion

e Still a prototype !
® Work under progress :

- breaking complex computations into multiple clock
cycles (important issue !)

- static (compile-time) estimation of FIFO sizes

- more complex applications (ex : MPEG decoder/
encoder)

e Test and feedback welcome !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

One last thing ...

® What does CAPH stands for ?
e CaphAin’t just Plain HDL

® (3 Cassiopeia

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

