
CAPH : A high-level actor-based
language for programming FPGAs

J. Sérot, F. Berry, S. Ahmed
Institut Pascal, UMR 6602 Université Blaise Pascal / CNRS

Clermont-Ferrand, France

WASC 2012 Apr 5-5 2012, Clermont-Ferrand

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Context and motivations

• Generalisation of heterogenous embedded systems

• hw +sw (typically : CPU + FPGAs)

• Large opportunities for performance improvements
(massive parallelism, close-to-sensor processing, ...)

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Context and motivations

• This raises challenging issues for the designer

• Programming concepts, techniques and tools are still
very different for software and hardware

• The very notion of “program” is quite different for a
software programmer and a hardware “designer” !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

The big issue

• Most software programmers find it hard to make
use of hardware reconfigurable (“programmable”)
devices

• Some reasons are “technical” (tools, ...)

• ... but the key issue has to do with the respective
programming models

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Programming models
• In most of (in not all) software programming models,

time is implicit

• this is possible because the model is sequential

• Ex : x := x+1; x := x*2;

it does not really matter when (at what date), the second
instruction is executed; the only thing that matters is that it
is carried out after the first one)

• Variation in the programming model (functional,
object-oriented, ...) does not fundamentally change
this

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Programming models
• By contrast, in hardware “programming” models, time (and

the related concept of synchronisation) is generally explicit

• Ex : VHDL :

process(clk) begin q <= ’0’; r <= q+1;... end;

• Moreover, separation between data and control signals

• in particular for systems operating “on the fly” (stream
processing applications)

• does not exist in software programming !

• This is what makes hardware programming
hard for software programmers !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

The big issue

How to make “hardware programming”
acceptable for “software” programmers ?

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

The big issue : “”standard” answer

• Make hardware description languages closer to
“software” programming languages

! C-like HDLs (SystemC, HandelC, ...)

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

C-like HDLs ?

• Some concepts of the sequential / imperative programming
model do no map easily/efficiently into hardware (ex:
random memory access)

• Some constructs of the “source” language must be avoided

• Ultimately requires knowledge on hardware
programming...

.... which is precisely what we want to avoid !

• Require complex (and hence hard to prove correct)
transformations to be implemented

... are not the panacea !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Why C-like HDLs fail

• The gap between the specification and the
implementation is too large

• esp. : control signals

• making them explicit at the specification level breaks
the abstraction barrier

• ... but inferring them from a high-level C description
is hard !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Reducing the gap

• What is needed is an adequate programming
model

• Offering an homogeneous view of control and
data values / signals

• ... thus supporting “software oriented”
descriptions of stream-processing applications

• ... but also leading to efficient hardware
implementations

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Finding an adequate
programming model

• Pragmatic (bottom-up) approach !

• Q : What can be easily / efficiently implemented in
hardware ?

• A (partial) :

• combinational logic

• FSMs

• FIFO based communications

• Can we base a “software-programmer-friendly”
programming language on this ?

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

The basic building blocks

• Combinational blocks can implement all pure (state-
less) computations

• FIFO-based communication fits nicely within data-
flow / actor based programming models

• these models are highly intuitive (and familiar to
programmers - esp. in DSP area)

• control signals can be embedded as special data tokens

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Dataflow model

A1

A2

A4

A3

oi

• Very old idea !

• An application = a collection of computing units (actors) exchanging
tokens through unidirectional, buffered links (FIFOs)

• For each actor, a set of firing rules specifies when it consumes input
tokens and produces output tokens

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

From to concepts to the language

• Need a formalism to describe / specify

• the network topology

• the behavior of actors

• what tokens contain / represent

Describing networks

A1

A2

A4

A3

oi

net o = A4 (x1, y1)

net (x,y) = A1 i

x

y

net x1 = A2 x

x1

net y1 = A3 y

y1

" Consistency can be checked using type-checking
" Reusable graph patterns can be encapsulated as higher-order functions

net diamond f g h k x =
 let x,y = f i in
 k (g x, h y)
net o = diamond A1 A2 A3 A4 i

Textual (functional) description

net (x,y) = A1 i
net o = A4 (A2 x, A3 y)

or

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Describing actor behavior

• Borrowed from the Hume language

• Behavior described a a set of transition rules

• Activation of rules based on pattern-matching

i1 i2

o

switch

8 9

8

4 5
6 4

9
4

I/Os

Local var

Rule format

Transition
rules

Generalized Finite State Machines

actor switch

 in (i1 : int,

 i2 : int)

 out (o : int)

 var s : (Left,Right) = Left

 rules (s,i1,i2) ! (o,s)

 | Left, v, _ ! v, Right

 | Right, _, v ! v, Left

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Generalized FSMs

• Cleanly separate computation from communication
concerns

• Trade-off between expressivity and predictabily
governed by the computation language used for
describing actions (from purely combinational fns to
recursive or higher-order fns) [inspired from Hume
approach]

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Data representation

• Key issue for stream-processing applications

• Synchronisation problems are partly solved by
using FIFOs to connect actors ...

• ... but we still need to represent the structure of the
processed data

• ex: detect start/end_of_frame and start/end_of_line in a
stream of images

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Data representation
• Two categories of tokens

• data tokens (integers, booleans, pixels, ...)

• control tokens (start_of_structure, end_of_structure)

Example

" Can be used to represent arbitrarily structured data (remember Lisp ?)

" No global control / synchronisation signals needed

" Naturally supports pipelined execution

< < 102 30 5 90 > < 3 53 80 12 > < 90 53 44 110 > < 11 82 45 100 > >$

102 30 5 90

3 53 80 12

90 53 44 110

11 82 45 100

image

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Data representation
" Functional representation of temporal operation

102 30 5 90

3 53 80 12

90 53 44 110

11 82 45 100

Example : 1-pixel delay

0 102 30 5

0 3 53 80

0 90 53 44

0 11 82 45

D1P

< < 102 30 5 90 > < 3 53 80 12 > < 90 53 44 110 > < 11 82 45 100 > >

$
< < 0 102 30 5 > < 0 3 53 80 > < 0 90 53 44 > < 0 11 82 45 > >

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

actor d1p

 in (i:signed<8> dc)

 out (c:signed<8> dc)

var s : {S0,S1,S2} = S0

var z : signed<8>

rules (s, i, z) -> (s, o,z)

| (S0, SoF, _) -> (S1, SoF, _)

| (S1, EoF, _) -> (S0, EoF, _)

| (S1, SoL, _) -> (S2, SoL, 0)

| (S2, Data v, z) -> (S2, Data z, v)

| (S2, EoL, _) -> (S1, SoL, _)

Data representation and actor behavior
< < 102 30 5 90 > < 3 53 80 12 > < 90 53 44 110 > < 11 82 45 100 > >$

< < 0 102 30 5 > < 0 3 53 80 > < 0 90 53 44 > < 0 11 82 45 > >

d1p

S2

i = EoF

o := EoF

S1

S0

i = SoL

o := SoL ; z := 0

i = SoF

o := SoF

i = v

o := z; z := v

i = EoL

o := EoL

Global values

Actors

I/Os

Network description

function f_abs x =
 if x < 0 then 0-x else x
 : signed<8> -> signed<8>;

constant threshold = 40;

actor d1p () ...

actor d1l () ...

actor add () ...

actor asub () ...

actor thr (t:signed<8>) ...

stream i:signed<8> dc from "dev:cam0";
stream o:signed<8> dc to "dev:mon1";

net g = add (asub(i, d1p i), asub(i, d1l i));
net o = thr [threshold] g;

A sample Caph program

2:o

1:i

6:asub

 w6:signed<8> dc 5:d1p

 w4:signed<8> dc

4:asub

 w3:signed<8> dc 3:d1l

 w1:signed<8> dc

8:thr[4]

 w10:signed<8> dc

7:add

 w9:signed<8> dc

 w8:signed<8> dc

 w5:signed<8> dc

 w7:signed<8> dc

 w2:signed<8> dcactor thr (k:unsigned<8>)
 in (a:unsigned<8> dc)
 out (c:unsigned<1> dc)
rules a -> c
| '< -> '<
| 'p -> if p > k then '1 else '0
| '> -> '>
;

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

The Caph toolset

• Graph visualizer : .dot
format

• Reference
interpreter :

• based on the fully
formalized semantics

• tracing, profiling and
debugging

• Compiler :

• elaboration of a
target-independant IR

• specialized backends
(SystemC, VHDL)

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Elaboration

• Three steps

1. network generation

2. actor translation

3. SystemC/VHDL transcription

• Only a quick overview here (see papers & LRM)

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

I. Network generation

• Using abstract interpretation
of the network
description, viewed as a
functional program

• Each application of a
function bound to an actor
inserts an instance of this
actor into the graph

• Each functional
dependency inserts a
channel

• channels are then
instanciated as FIFOs

net y = f (g x)

$

g f

$

g f
din dout

wr

full empty

rd

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

II. Actor translation

actor suml ()
 in (a: int dc)
 out (c: int)
 var st: {S0,S1}=S0
 var s : int
 rules st,a,s-> st,c,s
 S0, ‘<, _ # S1, _, 0
 | S1, ‘v, s # S1, _, s+v
 | S1, ‘>, s # S0, s, _

Example : suml : < 1 2 3 > = 6

Set of transition rules ! FSM + operations (FSMD)

$

S0

S1

a=<

s:=0

a=v

s:=s+v

a=>

c:=s

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

...
 begin
 if (reset='0') then
 st := S0; a_rd <= '0'; c_wr <= '0';
 elsif rising_edge(clock) then
 case state is
 when S0 =>
 if a_empty='0' and is_sos(a) then
 a_rd <= '1';
 st := S01;
 s := conv_std_logic_vector(0,15);
 end if;
 when S01 =>
 a_rd <= '0'; state <= S1;
 when S1 =>
 if a_empty='0' and is_data(a) then
 a_rd <= '1'; v := data_from(a);
 s := s+v; st := S11;
 end if;
 if a_empty='0' and is_eos(a) then
 a_rd <= '1'; c := s;
 c_wr <= '1'; st := S12;
 end if;
 when S11 =>
 a_rd <= '0'; st := S1;
 when S12 =>
 a_rd <= '0'; c_wr <= '0'; st := S0;
 end case;
 end if;
 end process;
end FSM;

actor suml ()
 in (a: int dc)
 out (c: int)
 var st: {S0,S1}=S0
 var s : int
 rules st,a,s-> st,c,s
 S0,'<,_ # S1,_,0
 | S1,'v,s # S1,_,s+v
 | S1,'>,s # S0,s,_

III. VHDL Transcription

S0

S1

a=<

s:=0

a=v

s:=s+v

a=>

c:=s

Example

entity sum_act is
 port (
 a_empty: in std_logic;
 a: in std_logic_vector(9 downto 0);
 a_rd: out std_logic;
 c_full: in std_logic;
 c: out std_logic_vector(15 downto 0);
 c_wr: out std_logic;
 clock: in std_logic;
 reset: in std_logic
);
end sum_act;

architecture FSM of sum_act is
 type t_state is (S0,S01,S1,S11,S12);
begin
 process(clock, reset)
 variable s : std_logic_vector(15 downto 0);
 variable st : t_state;
 variable v : std_logic_vector(7 downto 0);
...

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

A realistic example

1. thresholding a difference
image btw two successive
frames to get a binary
image

2. thresholding the horizontal
projection to get horizontal
bands containing moving
objects

3. computing and analysing
vertical projection on each
band to get position of
moving objects

Real-time tracking of moving objects in a digital video stream

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

A realistic example
type byte = unsigned<8>
type bit = unsigned<1>

const k1 = 30 -- for binary image
const k2 = 1200 -- for hor. projection
const k3 = 900 -- for vert. projection

actor asub () ...
actor d1f () ...
actor thr (t:byte) ...
actor hproj ()
actor vwin () ...
actor vproj () ...
actor peaks (t:byte) ...
actor win () ...

stream i : byte dc from "camera:0"
stream o : byte dc to "display:0"

net diff_im = asub (i, d1f i)
net bin_im = thr k1 diff_im
net hp = thr k2 (hproj bin_im)
net hband = vwin (hp, bin_im)
net vp = vproj hband
net o = win (peaks k3 vp, i) 2:o

1:i

4:asub

 w3:byte d c 3:d 1f

 w1:byte d c

11:win

 w11:byte d c

5:thr(30)

 w4:byte d c

 w2:byte d c

6:hproj

 w5:bit d c

8:vwin

 w7:bit d c

7:thr(120)

 w8:bit d c

 w6:byte d c

9:vproj

 w9:bit d c

10:peaks(90)

 w10:byte d c

 w13:byte d c

 w12:bit d c

Source code (extr.) Dataflow network

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

A realistic example

• Implemented on a smart-camera (!) platform embedding
a Stratix EP1S60 FPGA

• Synthesis of VHDL code produced by Caph compiler
using the Quartus toolset

• Interfacing to i/o devices via dedicated VHDL processes

• FIFO are implemented with LEs, on-chip or external
RAM banks depending on their size

• this size is currently estimated by running an profiled version
of the code generated by the SystemC backend

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

A realistic example

• FPGA utilisation :

• 3550 LEs (6%)

• 17 kbits SRAM

• 512 kB externam RAM (one-frame delay)

• Fmax = 150 MHz

• Correctly processes streams of 512 x 512 x
8 bits images at 15 FPS

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Conclusion
• A new domain-specific language for programming stream-

processing applications on FPGAs

• Substantial increase in abstraction level compared to
VHDL/Verilog

• without significant performance penalty

• Fully formalized approach (see LRM)

• complete formal semantics for the language

• formalized and tractable compilation path

• Toolset and manual available at

http://dream.univ-bpclermont.fr/index.php/en/caph-v-13.html

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

Conclusion

• Still a prototype !

• Work under progress :

- breaking complex computations into multiple clock
cycles (important issue !)

- static (compile-time) estimation of FIFO sizes

- more complex applications (ex : MPEG decoder/
encoder)

• Test and feedback welcome !

WASC 2012, Clermont-Ferrand J.Sérot/F.Berry/S.Ahmed

One last thing ...

• What does CAPH stands for ?

• Caph Ain’t just Plain HDL

• " Cassiopeia

