	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

Autofocusing with the help of the **empirical Haar transform**

Przemysław Śliwiński and Krzysztof Berezowski

Institute of Computer Engineering, Control and Robotics Wrocław University of Technology, POLAND

WASC 2012, Clermont-Ferrand, April 5-6th, 2012

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
●○	0000000	0000	0000	00
Introduct Presentation s	ion chedule			

Motivations and inspirations

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
••	0000000	0000	0000	00
Introducti Presentation so	ON chedule			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

- Motivations and inspirations
- Model and formal assumptions

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
●0	0000000	0000	0000	00
Introduct	O N chedule			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- Motivations and inspirations
- Model and formal assumptions
- Generic algorithm and its properties

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
●0	0000000	0000	0000	00
Introduct	O N chedule			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

- Motivations and inspirations
- Model and formal assumptions
- Generic algorithm and its properties
- AF criteria

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
●0	0000000	0000	0000	00
Introduct	O N chedule			

- Motivations and inspirations
- Model and formal assumptions
- Generic algorithm and its properties
- AF criteria
- Unbalanced Haar Transform and Single-Photon AF

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
●0	0000000	0000	0000	00
Introduct	O N chedule			

- Motivations and inspirations
- Model and formal assumptions
- Generic algorithm and its properties
- AF criteria
- Unbalanced Haar Transform and Single-Photon AF

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• Experimental results and conclusions

Introduction OO	Problem statement and algorithm 0000000	Properties 0000	Single-photon AF 0000	Conclusions 00
Introduc	ction			
Motivations	and inspirations			

Problem

A proper and reliable focusing algorithm is a conditio sine qua non of a 'good image'. Not only from an aesthetic vantage point, but also in automated applications.

• We exploit a *plethora* of the 'off-the-shelf' theoretical results developed in various disciplines:

イロト 不得 トイヨト イヨト ヨー ろくで

Introduction OO	Problem statement and algorithm 0000000	Properties 0000	Single-photon AF 0000	Conclusions 00
Introduc	ction			
Motivations	and inspirations			

Problem

A proper and reliable focusing algorithm is a conditio sine qua non of a 'good image'. Not only from an aesthetic vantage point, but also in automated applications.

- We exploit a *plethora* of the 'off-the-shelf' theoretical results developed in various disciplines:
 - signal and image processing, image analysis, harmonic analysis, control theory, or

イロト 不得 トイヨト イヨト ヨー ろくで

Introduction OO	Problem statement and algorithm 0000000	Properties 0000	Single-photon AF 0000	Conclusions 00
Introduc	tion			
Motivations	and inspirations			

Problem

A proper and reliable focusing algorithm is a conditio sine qua non of a 'good image'. Not only from an aesthetic vantage point, but also in automated applications.

- We exploit a *plethora* of the 'off-the-shelf' theoretical results developed in various disciplines:
 - signal and image processing, image analysis, harmonic analysis, control theory, or

• *information theory, probability theory* and *mathematical statistics,* as well.

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	00
Introduct Alternatives	ion			

Solution

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
Introduct Alternatives	tion			

two sensors

Solution

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
Introduc Alternatives	tion			

- two sensors
- two lenses, etc.

Solution

Introduction 00	Problem statement and algorithm 0000000	Properties 0000	Single-photon AF 0000	Conclusions 00
Introduc	ction			
Alternatives				

- two sensors
- two lenses, etc.
- Light-field cameras

Solution

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	00
Introduc Alternatives	tion			

- two sensors
- two lenses, etc.

Light-field cameras

• lack resolution/dynamic range

Solution

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	00
Introduc Alternatives	tion			

- two sensors
- two lenses, etc.

Light-field cameras

- lack resolution/dynamic range
- computational photography devices

Solution

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	00
Introduc Alternatives	tion			

- two sensors
- two lenses, etc.

Light-field cameras

- lack resolution/dynamic range
- computational photography devices

Femtosecond lasers

Solution

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	00
Introduc Alternatives	tion			

- two sensors
- two lenses, etc.

Light-field cameras

- lack resolution/dynamic range
- computational photography devices

Femtosecond lasers

• comparatively slow (like line scanners)

Solution

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	00
Introduc Alternatives	tion			

- two sensors
- two lenses, etc.

Light-field cameras

- lack resolution/dynamic range
- computational photography devices

Femtosecond lasers

- comparatively slow (like line scanners)
- computational photography devices

Solution

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	••••••	0000	0000	00
Problem	statement			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	⊙●○○○○○	0000	0000	00
Generic	AF algorithm steps			

• Compute the focus function (with optional:

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
Generic .	AF algorithm steps			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

• Compute the focus function (with optional:

denoising and

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	000000	0000	0000	00
Generic	AF algorithm steps			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

- denoising and
- ensor output linearization).

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	000000	0000	0000	00
Generic	AF algorithm steps			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Occupie the focus function (with optional:

- denoising and
- ensor output linearization).
- O Shift the lens accordingly:

Generic	AF algorithm steps			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	⊙●○○○○○	0000	0000	00

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

- Occupie the focus function (with optional:
 - denoising and
 - ensor output linearization).
- O Shift the lens accordingly:
 - determine the direction

Conorio	AE algorithm stone	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Occupie the focus function (with optional:
 - denoising and
 - ensor output linearization).
- O Shift the lens accordingly:
 - determine the direction
 - ø set the step-size

Introduction Problem statement and algorithm Properties Single-photon AF 00 0●00000 0000 0000	Conclusions 00

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Occupie the focus function (with optional:
 - denoising and
 - ensor output linearization).
- O Shift the lens accordingly:
 - determine the direction
 - ø set the step-size
- Make it reliable in noisy environments!

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
Problem s	tatement			

The scene is a 2D homogenous second-order stationary process (thus an ergodic (in the wide sense) random field) with unknown distribution and unknown correlation function.

イロト 不得 トイヨト イヨト ヨー ろくで

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
Problem Assumptions	statement			

- The scene is a 2D homogenous second-order stationary process (thus an ergodic (in the wide sense) random field) with unknown distribution and unknown correlation function.
- The lens system is modeled with the help of the *first-order* optics laws, that is, the lens is merely a simple centered moving average filter with an order proportional to the distance of the sensor from the image plane and to the size of the lens aperture.

イロト 不得 トイヨト イヨト ヨー ろくで

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	00●0000	0000	0000	00
Problem Assumptions	statement			

- The scene is a 2D homogenous second-order stationary process (thus an ergodic (in the wide sense) random field) with unknown distribution and unknown correlation function.
- The lens system is modeled with the help of the *first-order* optics laws, that is, the lens is merely a simple centered moving average filter with an order proportional to the distance of the sensor from the image plane and to the size of the lens aperture.
- The image sensor acts as a block sampler, that the lens-produced image is orthogonally projected onto the space of piecewise constant functions.

AE algo	rithm foundations			
	000000	0000	0000	
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

• The AF algorithm is based on the following lemmas:

Lemma

Under assumptions 1-3, the variance of the captured image is a unimodal function w.r.t. the order of the lens filter and attains its maximum value for the in-focus image.

Lemma

The variance estimate is **tantamount** to the orthogonal expansion of the image acquired by the sensor.

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
AF algori	ithm routine			

• The algorithm seeks the **maximum** of the (noised) **image variance**.

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
AF algo	rithm routine			

• The algorithm seeks the **maximum** of the (noised) **image variance**.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• The focus functions is **global!**

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
AF algor	rithm routine			

- The algorithm seeks the **maximum** of the (noised) **image variance**.
- The focus functions is **global!**
- Various (bi-)**orthogonal expansions** can be used to estimate the variance:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
AF algor	rithm routine			

- The algorithm seeks the **maximum** of the (noised) **image variance**.
- The focus functions is **global!**
- Various (bi-)**orthogonal expansions** can be used to estimate the variance:

(日) (日) (日) (日) (日) (日) (日) (日)

• trigonometric (DCT, Fourier, Hartley),

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
AF algor	rithm routine			

- The algorithm seeks the **maximum** of the (noised) **image variance**.
- The focus functions is **global!**
- Various (bi-)**orthogonal expansions** can be used to estimate the variance:

(日) (日) (日) (日) (日) (日) (日) (日)

- trigonometric (DCT, Fourier, Hartley),
- Walsh-Hadamard (additions and subtractions only!),
| Introduction | Problem statement and algorithm | Properties | Single-photon AF | Conclusions |
|--------------|---------------------------------|------------|------------------|-------------|
| 00 | | 0000 | 0000 | 00 |
| AF algo | rithm routine | | | |

- The algorithm seeks the **maximum** of the (noised) **image variance**.
- The focus functions is **global!**
- Various (bi-)**orthogonal expansions** can be used to estimate the variance:
 - trigonometric (DCT, Fourier, Hartley),
 - Walsh-Hadamard (additions and subtractions only!),
 - wavelet, *e.g.* orthogonal *Haar*, *Daubechies*, or biorthogonal *LeGall* (5/3) and *Cohen-Daubechies-Vial* (9/7),

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	00
AF algo	rithm routine			

- The algorithm seeks the **maximum** of the (noised) **image variance**.
- The focus functions is global!
- Various (bi-)**orthogonal expansions** can be used to estimate the variance:
 - trigonometric (DCT, Fourier, Hartley),
 - Walsh-Hadamard (additions and subtractions only!),
 - wavelet, *e.g.* orthogonal *Haar*, *Daubechies*, or biorthogonal *LeGall* (5/3) and *Cohen-Daubechies-Vial* (9/7),

 polynomial, e.g. Chebyshev, Legendre, Zernike (in general—any 'people's polynomials').

The following discrete orthogonal series transforms are available in the transform coders:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• DCT transform, (JPEG),

The following discrete orthogonal series transforms are available in the transform coders:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- DCT transform, (JPEG),
- Haar wavelet transform (JPEG 2K (Part II)), and

The following discrete orthogonal series transforms are available in the transform coders:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- DCT transform, (JPEG),
- Haar wavelet transform (JPEG 2K (Part II)), and
- Walsh-Hadamard transform (JPEG XR).

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	00
Maximum	search algorithms			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

We can apply standard algorithms to find the **function's maximum** in a **noisy environment**:

• Golden section-search (GSS) performed on:

Introduction 00	Problem statement and algorithm	Properties 0000	Single-photon AF 0000	Conclusions
Maximum	search algorithms			

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

We can apply standard algorithms to find the **function's maximum** in a **noisy environment**:

- Golden section-search (GSS) performed on:
 - averaged image, or

00	OCOOOOO	0000	Single-photon AF	00
Maximun	n search algorithms			

- Golden section-search (GSS) performed on:
 - averaged image, or
 - smoothed image (e.g. by any de-noising routine).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

00	OCOOOOO	0000	Single-photon AF	00
Maximun	n search algorithms			

- Golden section-search (GSS) performed on:
 - averaged image, or
 - smoothed image (e.g. by any de-noising routine).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• Stochastic approximation (SA) exploiting:

00	OCOOOOO	0000	Single-photon AF	00
Maximun	n search algorithms			

- Golden section-search (GSS) performed on:
 - averaged image, or
 - smoothed image (e.g. by any de-noising routine).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- Stochastic approximation (SA) exploiting:
 - smoothed image, or

00	000000	0000	0000	00
Maximum	search algorithms			

- Golden section-search (GSS) performed on:
 - averaged image, or
 - smoothed image (e.g. by any de-noising routine).
- Stochastic approximation (SA) exploiting:
 - smoothed image, or
 - smoothed focus function (*e.g.* by using standard *kernel* convolutions).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	00
AF criter	ia			

 Unimodality – holds in theory. In practice, unimodality can be lost (aperture control!).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

AF crite	ria			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	•••••	0000	00

 Unimodality – holds in theory. In practice, unimodality can be lost (aperture control!).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Accuracy – corresponds to the resolution of the sensor.

AF crite	ria			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	●000	0000	00

 Unimodality – holds in theory. In practice, unimodality can be lost (aperture control!).

- **Accuracy** corresponds to the resolution of the sensor.
- Reproducibility a sharp top of the extremum holds in theory.

AF crite	ria			
		0000	0000	
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

- Unimodality holds in theory. In practice, unimodality can be lost (aperture control!).
- **Accuracy** corresponds to the resolution of the sensor.
- Reproducibility a sharp top of the extremum holds in theory.
- Range global. The variance of the image does not vanish.

		0000	0000	00
00	0000000	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

- Unimodality holds in theory. In practice, unimodality can be lost (aperture control!).
- **Accuracy** corresponds to the resolution of the sensor.
- Reproducibility a sharp top of the extremum holds in theory.
- Sange global. The variance of the image does not vanish.

 General applicability – a generic class of processes is admitted (ARMA models, *Markov* fields, and piecewise-smooth models).

		0000	0000	00
00	0000000	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

- Unimodality holds in theory. In practice, unimodality can be lost (aperture control!).
- **Accuracy** corresponds to the resolution of the sensor.
- Reproducibility a sharp top of the extremum holds in theory.
- Sange global. The variance of the image does not vanish.
- General applicability a generic class of processes is admitted (ARMA models, *Markov* fields, and piecewise-smooth models).
- Insensitivity to other parameters particularly robust against the noise.

		0000	0000	00
00	0000000	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

- Unimodality holds in theory. In practice, unimodality can be lost (aperture control!).
- **Accuracy** corresponds to the resolution of the sensor.
- Reproducibility a sharp top of the extremum holds in theory.
- Sange global. The variance of the image does not vanish.
- General applicability a generic class of processes is admitted (ARMA models, *Markov* fields, and piecewise-smooth models).
- Insensitivity to other parameters particularly robust against the noise.

Video signal compatibility – holds

		0000	0000	00
00	0000000	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

- Unimodality holds in theory. In practice, unimodality can be lost (aperture control!).
- **Accuracy** corresponds to the resolution of the sensor.
- Reproducibility a sharp top of the extremum holds in theory.
- Sange global. The variance of the image does not vanish.
- General applicability a generic class of processes is admitted (ARMA models, *Markov* fields, and piecewise-smooth models).
- Insensitivity to other parameters particularly robust against the noise.

- Video signal compatibility holds
 - Block samplers = Foveon X3 sensor.

		0000	0000	00
00	0000000	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

- Unimodality holds in theory. In practice, unimodality can be lost (aperture control!).
- **Accuracy** corresponds to the resolution of the sensor.
- Reproducibility a sharp top of the extremum holds in theory.
- Sange global. The variance of the image does not vanish.
- General applicability a generic class of processes is admitted (ARMA models, *Markov* fields, and piecewise-smooth models).
- Insensitivity to other parameters particularly robust against the noise.
- Video signal compatibility holds
 - Block samplers = Foveon X3 sensor.
 - Low-pass filter + Dirac comb-based sampler = Bayer CFA sensors.

		0000	0000	00
00	0000000	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

- Unimodality holds in theory. In practice, unimodality can be lost (aperture control!).
- **Accuracy** corresponds to the resolution of the sensor.
- Reproducibility a sharp top of the extremum holds in theory.
- Sange global. The variance of the image does not vanish.
- General applicability a generic class of processes is admitted (ARMA models, *Markov* fields, and piecewise-smooth models).
- Insensitivity to other parameters particularly robust against the noise.
- Video signal compatibility holds
 - Block samplers = Foveon X3 sensor.
 - Low-pass filter + Dirac comb-based sampler = Bayer CFA sensors.
- Section = all algorithms exploit 'fast' transforms

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	○●○○	0000	00
Experim	ental results			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		00●0	0000	00
Experim	ental results			

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	○OO●	0000	00
Experim	ental results			

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Single-Ph	oton AF			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	●000	00

Can the generic algorithm be adapted to the Single-Photon Imagery?

• There are several noise sources

$$Y_{lk} = I_{lk} + Poisson_{lk} + Gaussian_{lk} + PRNU_{lk} + crosstalk_{lk} + quantization_{lk} + \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Single-Ph	oton AF			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	●000	00

Can the generic algorithm be adapted to the Single-Photon Imagery?

• There are several noise sources

$$Y_{lk} = I_{lk} + Poisson_{lk} + Gaussian_{lk} + PRNU_{lk} + crosstalk_{lk} + quantization_{lk} + \dots$$

• Some of them are **pure** (random) noises, e.g.:

Single-Ph	oton AF			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	●000	00

Can the generic algorithm be adapted to the Single-Photon Imagery?

• There are several noise sources

$$Y_{lk} = I_{lk} + Poisson_{lk} + Gaussian_{lk} + PRNU_{lk} + crosstalk_{lk} + quantization_{lk} + \dots$$

- Some of them are **pure** (random) noises, e.g.:
 - Shot noise (of Poisson distribution),

Single-Ph	oton AF			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	●000	00

Can the generic algorithm be adapted to the Single-Photon Imagery?

• There are several noise sources

$$Y_{lk} = I_{lk} + Poisson_{lk} + Gaussian_{lk} + PRNU_{lk} + crosstalk_{lk} + quantization_{lk} + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

- Some of them are **pure** (random) noises, e.g.:
 - Shot noise (of *Poisson* distribution),
 - Thermal noise (of *Gaussian* distribution).

Single-Ph	oton AF			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	●000	00

Can the generic algorithm be adapted to the Single-Photon Imagery?

• There are several noise sources

$$Y_{lk} = I_{lk} + Poisson_{lk} + Gaussian_{lk} + PRNU_{lk} + crosstalk_{lk} + quantization_{lk} + \dots$$

- Some of them are **pure** (random) noises, e.g.:
 - Shot noise (of *Poisson* distribution),
 - Thermal noise (of *Gaussian* distribution).
- Some are random but fixed, *e.g. Photo-Response Non-uniformity*

Single-Ph	noton AF			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	●000	00

Can the generic algorithm be adapted to the Single-Photon Imagery?

• There are several noise sources

 $Y_{lk} = I_{lk} + Poisson_{lk} + Gaussian_{lk} + PRNU_{lk}$ $+ crosstalk_{lk} + quantization_{lk} + \dots$

- Some of them are **pure** (random) noises, e.g.:
 - Shot noise (of Poisson distribution),
 - Thermal noise (of *Gaussian* distribution).
- Some are random but fixed, *e.g. Photo-Response Non-uniformity*
- For the others, it is just convenient to model them as a noise...

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0●00	00
Unbalance	ed Haar Transform			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

• In order to model **PRNU** for each pixel we use the *Unbalanced Haar Transform* instead of the classic one

- In order to model **PRNU** for each pixel we use the *Unbalanced Haar Transform* instead of the classic one
- The basic transform step becomes a little bit more complicated than

$$\hat{\alpha}_{m-1,n} = \frac{\sqrt{2}}{2} \hat{\alpha}_{m,2n} + \frac{\sqrt{2}}{2} \hat{\alpha}_{m,2n+1}$$
vs.
$$\bar{\alpha}_{m-1,n} = \sqrt{\frac{I_{m,2n}}{I_{m-1,n}}} \bar{\alpha}_{m,2n} + \sqrt{\frac{I_{m,2n+1}}{I_{m-1,n}}} \bar{\alpha}_{m,2n+1},$$

with $I_{m-1,n} = I_{m,2n+1} + I_{m,2n+1}$ (where $I_{m,2n+1}$, $I_{m-1,n}$ are the non-uniformity indices).

Unbaland	ced Haar Transform			
00	0000000	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single photon AE	Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Application of **UHT** has some advantages:

• Can be *plugged-in* into the standard AF algorithm.

Unhalance	ad Haar Transform			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000		00

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Application of **UHT** has some advantages:

- Can be *plugged-in* into the standard AF algorithm.
- Remains fast, *i.e.* linear with number of pixels.

Unhalan	ced Haar Transform			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	○○●○	00

イロト 不得 トイヨト イヨト ヨー ろくで

Application of **UHT** has some advantages:

- Can be *plugged-in* into the standard AF algorithm.
- Remains fast, *i.e.* linear with number of pixels.
- Allows for *in situ* image denoising.

Unhaland	ed Haar Transform			
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000		00

イロト 不得 トイヨト イヨト ヨー ろくで

Application of **UHT** has some advantages:

- Can be *plugged-in* into the standard AF algorithm.
- Remains fast, *i.e.* linear with number of pixels.
- Allows for *in situ* image denoising.
- Can be computed in parallel.
| Unhalan | ced Haar Transform | | | |
|--------------|---------------------------------|------------|------------------|-------------|
| Introduction | Problem statement and algorithm | Properties | Single-photon AF | Conclusions |
| 00 | 0000000 | 0000 | | 00 |

イロト 不得 トイヨト イヨト ヨー うへつ

Application of **UHT** has some advantages:

- Can be *plugged-in* into the standard AF algorithm.
- Remains fast, *i.e.* linear with number of pixels.
- Allows for *in situ* image denoising.
- Can be computed in parallel.
- But... requires computing square roots...

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	000●	00
Single-ph	oton AF			

 $Y_{lk} \sim I_{lk} + Poisson_{lk} + Gaussian_{lk}$.

• The single-photon-denoising algorithm has two simple steps:

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	000●	00
Single-ph	oton AF			

$$Y_{lk} \sim I_{lk} + Poisson_{lk} + Gaussian_{lk}$$
.

• The *single-photon-denoising* algorithm has two simple steps:

• 'removal' of the Gaussian part by UHT transform with a thresholding. Then

 $Y_{lk} \sim I_{lk} + Poisson_{lk}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	000●	00
Single-ph	oton AF			

$$Y_{lk} \sim I_{lk} + Poisson_{lk} + Gaussian_{lk}$$
.

• The *single-photon-denoising* algorithm has two simple steps:

• 'removal' of the Gaussian part by UHT transform with a thresholding. Then

$$Y_{lk} \sim I_{lk} + Poisson_{lk}$$

• application of the *Anscombe* transform and repeating the previous step (*i.e.* the UHT transform with a thresholding). Thus

$$Y_{lk} \sim I_{lk}$$

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	000●	00
Single-ph	oton AF			

$$Y_{lk} \sim I_{lk} + Poisson_{lk} + Gaussian_{lk}$$
.

• The single-photon-denoising algorithm has two simple steps:

• 'removal' of the Gaussian part by UHT transform with a thresholding. Then

$$Y_{lk} \sim I_{lk} + Poisson_{lk}$$

• application of the *Anscombe* transform and repeating the previous step (*i.e.* the UHT transform with a thresholding). Thus

$$Y_{lk} \sim I_{lk}$$

• The rest of the **AF** algorithm remains unchanged.

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	•0
Final cond	clusions			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

The proposed **AF algorithm:**

• Is *robust* against a noise.

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00		0000	0000	●0
Final cond	clusions			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

The proposed **AF algorithm**:

- Is *robust* against a noise.
- Works with a standard (cheap) equipment.

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	••
Final con	clusions			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The proposed **AF algorithm:**

- Is *robust* against a noise.
- Works with a standard (cheap) equipment.
- Can *reuse* existing IPs.

Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions
00	0000000	0000	0000	••
Final con	clusions			

(日) (日) (日) (日) (日) (日) (日) (日) (日)

The proposed **AF algorithm**:

- Is robust against a noise.
- Works with a standard (cheap) equipment.
- Can *reuse* existing IPs.
- Can effectively be implemented (e.g. in situ).

Example				
00	000000	0000	0000	00
Introduction	Problem statement and algorithm	Properties	Single-photon AF	Conclusions

The demonstration movie can be found at: http://diuna.iiar.pwr.wroc.pl/sliwinski/gss-af.avi