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Introduction
Motivations and inspirations

Problem
A proper and reliable focusing algorithm is a conditio sine qua non
of a ’good image’. Not only from an aesthetic vantage point, but
also in automated applications.

We exploit a plethora of the ’off-the-shelf’theoretical results
developed in various disciplines:

signal and image processing, image analysis, harmonic analysis,
control theory, or
information theory, probability theory and mathematical
statistics, as well.
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Introduction
Alternatives

Stereo-vision

two sensors
two lenses, etc.

Light-field cameras

lack resolution/dynamic range
computational photography devices

Femtosecond lasers

comparatively slow (like line scanners)
computational photography devices

Solution
Our algorithm works with standard matrix sensors & standard
optics, and employs standard transforms and routines. . .
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Problem statement
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Generic AF algorithm steps

1 Compute the focus function (with optional:

1 denoising and
2 sensor output linearization).

2 Shift the lens accordingly:

1 determine the direction
2 set the step-size

3 Make it reliable in noisy environments!
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Problem statement
Assumptions

1 The scene is a 2D homogenous second-order stationary
process (thus an ergodic (in the wide sense) random field)
with unknown distribution and unknown correlation function.

2 The lens system is modeled with the help of the first-order
optics laws, that is, the lens is merely a simple centered
moving average filter with an order proportional to the
distance of the sensor from the image plane and to the size of
the lens aperture.

3 The image sensor acts as a block sampler, that the
lens-produced image is orthogonally projected onto the space
of piecewise constant functions.
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AF algorithm foundations

The AF algorithm is based on the following lemmas:

Lemma
Under assumptions 1-3, the variance of the captured image is a
unimodal function w.r.t. the order of the lens filter and attains its
maximum value for the in-focus image.

Lemma
The variance estimate is tantamount to the orthogonal expansion
of the image acquired by the sensor.
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AF algorithm routine

The algorithm seeks the maximum of the (noised) image
variance.

The focus functions is global!
Various (bi-)orthogonal expansions can be used to estimate
the variance:

trigonometric (DCT, Fourier, Hartley),
Walsh-Hadamard (additions and subtractions only!),
wavelet, e.g. orthogonal Haar, Daubechies, or biorthogonal
LeGall (5/3) and Cohen-Daubechies-Vial (9/7),
polynomial, e.g. Chebyshev, Legendre, Zernike (in
general– any ’people’s polynomials’).
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Possible AF function computation implementations

The following discrete orthogonal series transforms are available in
the transform coders:

DCT transform, (JPEG),

Haar wavelet transform (JPEG 2K (Part II)), and
Walsh-Hadamard transform (JPEG XR).
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Maximum search algorithms

We can apply standard algorithms to find the function’s
maximum in a noisy environment:

Golden section-search (GSS) performed on:

averaged image, or
smoothed image (e.g. by any de-noising routine).

Stochastic approximation (SA) exploiting:

smoothed image, or
smoothed focus function (e.g. by using standard kernel
convolutions).
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AF criteria

1 Unimodality —holds in theory. In practice, unimodality can
be lost (aperture control!).

2 Accuracy —corresponds to the resolution of the sensor.
3 Reproducibility —a sharp top of the extremum holds in
theory.

4 Range —global. The variance of the image does not vanish.
5 General applicability —a generic class of processes is
admitted (ARMA models, Markov fields, and
piecewise-smooth models).

6 Insensitivity to other parameters —particularly robust
against the noise.

7 Video signal compatibility —holds

Block samplers = Foveon X3 sensor.
Low-pass filter + Dirac comb-based sampler = Bayer CFA
sensors.

8 Fast implementation —all algorithms exploit ’fast’
transforms. . .
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Experimental results
AF against aperture
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Experimental results
AF against transform coder
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Experimental results
AF against image size
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Single-Photon AF

Problem
Can the generic algorithm be adapted to the Single-Photon
Imagery?

There are several noise sources

Ylk = Ilk + Poissonlk +Gaussianlk + PRNUlk

+crosstalklk + quantizationlk + . . .

Some of them are pure (random) noises, e.g.:

Shot noise (of Poisson distribution),
Thermal noise (of Gaussian distribution).

Some are random but fixed, e.g. Photo-Response
Non-uniformity
For the others, it is just convenient to model them as a
noise. . .
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Unbalanced Haar Transform

In order to model PRNU for each pixel we use the
Unbalanced Haar Transform instead of the classic one

The basic transform step becomes a little bit more
complicated than

α̂m−1,n =
√

2
2 α̂m,2n +

√
2

2 α̂m,2n+1

vs.

ᾱm−1,n =
√

Im,2n
Im−1,n

ᾱm,2n +
√

Im,2n+1
Im−1,n

ᾱm,2n+1,

with Im−1,n = Im,2n+1 + Im,2n+1 (where Im,2n+1, Im−1,n are the
non-uniformity indices).
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Unbalanced Haar Transform

Application of UHT has some advantages:

Can be plugged-in into the standard AF algorithm.

Remains fast, i.e. linear with number of pixels.

Allows for in situ image denoising.

Can be computed in parallel.

But. . . requires computing square roots. . .



Introduction Problem statement and algorithm Properties Single-photon AF Conclusions

Unbalanced Haar Transform

Application of UHT has some advantages:

Can be plugged-in into the standard AF algorithm.

Remains fast, i.e. linear with number of pixels.

Allows for in situ image denoising.

Can be computed in parallel.

But. . . requires computing square roots. . .



Introduction Problem statement and algorithm Properties Single-photon AF Conclusions

Unbalanced Haar Transform

Application of UHT has some advantages:

Can be plugged-in into the standard AF algorithm.

Remains fast, i.e. linear with number of pixels.

Allows for in situ image denoising.

Can be computed in parallel.

But. . . requires computing square roots. . .



Introduction Problem statement and algorithm Properties Single-photon AF Conclusions

Unbalanced Haar Transform

Application of UHT has some advantages:

Can be plugged-in into the standard AF algorithm.

Remains fast, i.e. linear with number of pixels.

Allows for in situ image denoising.

Can be computed in parallel.

But. . . requires computing square roots. . .



Introduction Problem statement and algorithm Properties Single-photon AF Conclusions

Unbalanced Haar Transform

Application of UHT has some advantages:

Can be plugged-in into the standard AF algorithm.

Remains fast, i.e. linear with number of pixels.

Allows for in situ image denoising.

Can be computed in parallel.

But. . . requires computing square roots. . .



Introduction Problem statement and algorithm Properties Single-photon AF Conclusions

Single-photon AF

We have now

Ylk ∼ Ilk + Poissonlk +Gaussianlk.

The single-photon-denoising algorithm has two simple steps:

’removal’of the Gaussian part by UHT transform with a
thresholding. Then

Ylk ∼ Ilk + Poissonlk

application of the Anscombe transform and repeating the
previous step (i.e. the UHT transform with a thresholding).
Thus

Ylk ∼ Ilk

The rest of the AF algorithm remains unchanged.
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Can effectively be implemented (e.g. in situ).
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Example

The demonstration movie can be found at:
http://diuna.iiar.pwr.wroc.pl/sliwinski/gss-af.avi
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