

Parallel Processing Architectures and Power Efficiency in Smart Camera Chips

Ricardo Carmona-Galán, Jorge Fernández-Berni, M. Trevisi and Ángel Rodríguez-Vázquez

> rcarmona@imse-cnm.csic.es www.imse-cnm.csic.es/~rcarmona

Instituto de Microelectrónica de Sevilla (IMSE-CNM) CSIC-Universidad de Sevilla (Spain)

WASC 2014, Pisa (Italy)

Task parallelization

Task parallelization

Task parallelization

- Distributing tasks between several processors working in parallel speeds up processing
- Constrained by the degree of parallelization that can be achieved

Amdahl's law

Amdahl's law

- Favors the use of a single-core system
- But...problems have grown and parallel processing is the only alternative to operate onto a large amount of data in a certain amount of time

Performance vs. power efficiency

GOPS vs. GOPS/W

...or MOPS/mW, or nJ/OP

Performance vs. power efficiency

VS.

Basic core equivalent

[Hill & Marty 2008]

- Time to perform an elementary operation $\rightarrow t_0$
- Elementary performance \rightarrow G₀ = 1 / t₀
- Energy required to realize an elementary op. $\rightarrow e_0$
- Power consumption of one BCE \rightarrow P₀ = e₀ / t₀

Single n-BCE core

n 1-BCE cores in parallel

n/r r-BCE cores in parallel

Pollack's rule

Performance scales with the square root of complexity

[Borkar 2007]

$$G(n,r) = {\binom{n}{r}} \sqrt{r}G_0 = \frac{n}{\sqrt{r}}G_0$$

- Single n-BCE core: $r = n \rightarrow G(n,n) = \sqrt{n}G_0$
- n 1-BCE cores in parallel: $r = 1 \rightarrow G(n,1)=nG_0$

Processor/memory performance gap

WASC 2014, Pisa (Italy)

© 2007 Elsevier, Inc. All rights reserved.

Processing speed

$$t(n,r) = \frac{\sqrt{r}}{n}t_0$$

• Single n-BCE core: $r = n \rightarrow t(n,n) = t_0/\sqrt{n}$

• n 1-BCE cores in parallel: $r = 1 \rightarrow t(n,1) = t_0/n$

Energy required to operate

$e(n,r) = n \cdot e_0$

... which is independent of the degree of parallelization

Power consumption

$P(n,r) = \frac{e(n,r)}{t(n,r)} = \frac{n^2}{\sqrt{r}}P_0$

Power efficiency

Power efficiency

$\frac{G(n,r)}{P(n,r)} \propto \left(\frac{n}{r}\right)^{k}$

Multicore architectures

Normalized power consumption

Normalized computing power

A survey of multicore processors

First author	Year	Tech. (nm)	Nproc	Clk (MHz)	Area (mm2)	Power (mW)	GOPS	First author	Year	Tech. (nm)	Nproc	Clk (MHz)	Area (mm2)	Power (mW)	GOPS
Gerosa	2008	45	1	1600.0	25.96	4000.0	3.85	Куо	2003	180	128	100.0	121.00	4000.0	51.20
Intel	2010	45	2	1600.0	51.92	8000.0	8.03	Shorin Kyo	2008	130	128	100.0	100.00	2000.0	100.00
Hinrichs	2000	500	4	66.0	187.68	650.0	1.30	Chih-Chi Cheng	2009	180	128	50.0	70.50	374.0	76.80
Shiota	2005	90	4	533.0	122.57	5000.0	51.20	Seungjin Lee	2010	130	128	200.0	4.22	92.0	76.80
Chien	2008	180	4	50.0	8.91	21.6	0.80	Jae-Sung Yoon	2013	180	128	200.0	28.75	413.0	153.60
Minsu Kim	2009	130	4	200.0	4.30	51.8	54.00	Joo-Young Kim	2010	180	130	400.0	49.00	695.0	201.40
Freescale	2011	40	4	1200.0	6.90	3800.0	12.00	Jimwook Oh	2013	130	157	200.0	32.00	534.0	342.00
Se-Hyun Yang	2012	32	4	1500.0	118.00	4000.0	14.00	Truong	2009	65	167	1070.0	0.71	47.5	1.08
Rohrer	2005	90	5	2500.0	62.00	50000.0	9.50	Miao	2008	180	256	40.0	2.25	8.7	0.21
Kaul	2009	45	5	2800.0	0.75	278.0	17.17	Arakawa	2008	65	260	250.0	152.83	783.0	90.00
Nvidia	2010	40	8	1000.0	49.00	500.0	4.60	Abbo	2008	90	320	84.0	74.00	600.0	107.00
Yuyama	2010	45	8	648.0	153.76	3070.0	114.51	Chuan-Yung Tsai	2012	65	360	250.0	20.25	351.0	360.00
Weihu Wu	2011	65	8	1050.0	299.80	40000.0	128.00	Lopich	2011	350	418	75.0	9.00	26.4	1.00
Weihu Wu	2013	35	8	1350.0	182.50	40000.0	172.80	Junyoung Park	2013	130	432	200.0	28.00	270.0	271.40
Youngmin	2013	28	8	1800.0	123.71	6000.0	30.00	Dudek	2005	600	441	2.5	10.00	40.0	1.10
TH. Chen	2009	130	10	200.0	10.11	329.0	236.35	Graupner	2003	600	512	-	10.00	21.3	0.03
Ramacher	2001	350	16	100.0	506.00	8000.0	53.00	Tanabe	2012	40	549	266.0	44.54	748.6	463.90
Chia-Hsia Yang	2009	90	16	16.0	8.88	275.0	50.00	Wen-Chia Yang	2011	350	1024	10.0	13.86	21.0	8.19
Zhiyi Yu	2012	65	16	800.0	9.10	320.0	22.22	Jinwook Oh	2011	130	1025	200.0	13.50	75.0	49.14
Donghyun Kim	2009	190	10	400.0	27 50	E 40.0	91 60	Carmona	2003	500	2048	10.0	78.33	300.0	470.00
Vining Dong	2011	100	20	400.0	37.30	1121 7	2 10	Noda	2007	90	2048	200.0	3.10	250.0	40.00
Clormidy	2011	90	20	700.0	23.00	E00.0	27.00	Kuratuji	2011	65	3328	560.0	24.00	545.0	191.00
Dong Qu	2010	65	25	790.0	10.00	500.0	37.00	Komuro	2003	500	4096	10.0	49.00	280.0	14.64
Vun Ho	2015	65	24	850.0 750.0	10.00	2020.0	20.40	Qingyu Lin	2009	180	4096	40.0	5.25	82.5	2.10
Zhivi Vu	2011	190	26	175.0	23.00	1152.0	21.62	Jendernalik	2013	350	4096	10.0	9.80	0.3	0.04
Ziliyi tu Kwanho Kim	2008	120	50	200.0	26.00	202.0	21.02	Znang	2011	180	4128	100.0	13.50	450.0	44.01
	2008	120	64	200.0	12 20	592.0	90.00	ROSSI	2010	90	4319	250.0	110.00	1450.0	120.00
	2012	10	64	222.0	210.00	1700.0	952.00	Seungjin Lee	2011	130	4920	200.0	4.50	84.0	24.00
Nui Xu Dhi Hung Dham	2012	40	64	174.0	210.00	200.0	11 20	Seungjin Lee	2010	130	16294	400.0	50.00	704.0	228.00
Fill-fiung Fildin Kwanho Kim	2013	120	65	200.0	25.00	200.0 E 0 2 0	125.00	IKenaga	2000	250	10384	100.0	2/3./0	2300.0	640.00
Nwaiiiiu Niiii Ozaki	2009	120	65	200.0	50.00 0 0 0 0	503.U	2 5.00	Lindfi	2004	350	10384	100.0	145.18	4000.0	330.00
Vzaki	2011	120	20	210.0	0.82	10406.0	2.50	Komuro Dengeuli Jaan	2009	350	76800	50.0	/8.55	41.6	3340.00
кпаналу	2007	130	82	800.0	155.00	10496.0	256.00	Dongsuk Jeon	2013	28	79400	27.0	2.22	2.7	149.30

www.imse-cnm.csic.es/mondego/public/processor_comp.xlsx

Normalization: area of BCE

• Total number of resources $\rightarrow n = \frac{A}{\lambda^2 A_0}$ • Total resources per core $\rightarrow r = \frac{n}{N_{proc}}$

Pollack's rule

Power consumption vs. n

Power efficiency vs. n/r

Conclusions

- Parallelizing the operation of hardware resources has an incidence in power efficiency
- Increase in performance is easily predicted
- Estimation of power efficiency is more involved
- The roots of the gain are in the distribution of computing and memory resources
- The formal cause for the relation found is still pending

Acknowledgements

This work has been funded by:

- The Spanish Government through projects TEC2012-38921-C02 MINECO (ERDF/FEDER), IPT-2011-1625-430000 MINECO, IPC-20111009 CDTI (ERDF/FEDER)
- Junta de Andalucía through project TIC 2338-2012 CEICE
- the Office of Naval Research (USA) through grant no. N000141410355.

Analog array processor examples

First author	Year	Tech. (nm)	Nproc	Clk (MHz)	Area (mm2)	Power (mW)	GOPS
Minsu Kim	2009	130	4	200.00	4.30	51.8	54.00
Jinwook Oh	2011	130	1025	200.00	13.50	75.0	49.14
Seungjin Lee	2010	130	6412	400.00	50.00	704.0	228.00
Wen-Chia Yang	2011	350	1024	10.00	13.86	21.0	8.19
Jendernalik	2013	350	4096	10.00	9.80	0.3	0.0369
Linan	2004	350	16384	100.00	145.18	4000.0	330.00
Carmona	2003	500	2048	10.00	78.33	300.0	470.00
Dudek	2005	600	441	2.50	10.00	40.0	1.10
Graupner	2003	600	512	_	10.00	21.3	0.03

Power vs. complexity

Performance vs. complexity

References

- G. M. Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," in *Proc. of the Spring Joint Computer Conference (AFIPS)*, 1967, pp. 483–485.
- S. Borkar, "Thousand core chips: a technology perspective," in *Proceedings of the 44th annual Design Automation Conference (DAC),* 2007, pp. 746–749.
- J. L. Gustafson, "Reevaluating Amdahl's law," *Communications of the ACM*, vol. 31, no. 5, pp. 532–533, May 1988.
- J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach (4th ed.). Morgan Kaufman, 2006.
- M. Hill and M. Marty, "Amdahl's law in the multicore era," *Computer*, vol. 41, no. 7, pp. 33 –38, July 2008.
- S. Moreno-Londono and J. Pineda de Gyvez, "Extending Amdahl's law for energy-efficiency," in *Int. Conf. on Energy Aware Computing (ICEAC),* Dec. 2010, pp. 1–4.
- M. V. Wilkes, "The memory gap and the future of high performance memories," SIGARCH Computer Architecture News, vol. 29, no. 1, pp. 2–7, Mar. 2001.