
ZinziPEG: a Low-complexity and Error
Resilient JPEG compressor for Smart
Camera Network

Daniele Campana, Marco Giglio, Matteo Petracca, Claudio Salvadori
TeCIP Institute, Scuola Superiore Sant'Anna, Pisa

Consorzio Nazionale Interuniversitario per le Telecomunicazioni

Main goal and environment
To develop a video coder with two main features:
● High compression level;
● High error resilience properties on wireless channels.

The considered environment:
● IEEE802.15.4 compliant networks
● Low-rate networks;
● High bit error rate values.

JPEG: working principles

The JPEG standard is based on:
● Discrete Cosine Transform (DCT)
● Huffman encoding (loss-less

entropy encoding)

JPEG example

8x8 pixel block

Discrete Cosine Transform

Quantization

−26
−3 0
−3 −2 −6
2 −4 1 −3
1 1 5 1 2
−1 1 −1 2 0 0
0 0 0 -1 -1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0
0 0
0

Zig Zag re-ordering

Huffman Encoding
● Lossless data compression:

○ Entropy encoding
○ Can be seen as a variable-length code table for

encoding a source symbol (such as a character in a
file)

○ The more common symbols are generally
represented using fewer bits than less common
symbols

JPEG advantages

● Good compression level
○ Compression quality ranging

form 1 to 100
○ Ratio between quality and

size variable from image to
image.

● JPEG is largely adopted

JPEG disadvantages
● The image header dimension is very big

○ It embeds quantization tables, huffman tables, etc…
○ ~500 bytes.

● No error resiliency properties
○ Error in the header: the decoding might converge to

wrong results or it might fail.
○ Error in the data: decoding failure or wrong decoding
○ DC of blocks is correlated: the errors are propagated

to following blocks

The ZinziPEG
ZinziPEG is based on an integer JPEG compressor written
in C.
We performed several modifications in order to achieve the
desired goals:
● markers
● header remotion
● packetization (oriented to IEEE802.15.4 standard)
● recovery and concealment on receiver side

The ZinziPEG Encoder
It implements:
● Header remotion

○ Removed about 500bytes (great impact in low
quality images)

● Packetization (oriented to IEEE802.15.4 standard)
● Trailer
● Markers insertion

Header removal
● The JPEG header is very big (~500 bytes)
● The CODEC parameters (quantization tables, huffman

tables, etc…) are set in the init-phase
○ Improve the compression
○ Improve the resiliency

Error in the header: it
is impossible to
decode the image!!

Packet fragmentation
● An integer number of block in each data packet

○ The first block of each packet is a safe point
○ If a packet is lost, the next one can be easily

decoded
● The available payload in 802.15.4 networks is only 104

bytes.
● Each packet contains an applicative trailer to describe

what the system is transmitting
○ Protected by using a FEC tecnique (Hamming Code (40,7))

The packet trailer

R FLAGS LAST_BLOCK NUM_BLOCKS NUM_BITS
 1 2 13 7 10

R 1 reserved bit

FLAGS 2 bits used for fragmentation purposes

LAST_BLOCK 13 bits containing the id of the last 8x8 block wich has been inserted in the packet.

NUM_BLOCKS 7 bits to represent the number of blocks contained in this packet.

NUM_BITS 10 bits representing the lenght of the zero padding

Standard JPEG markers
● Standard JPEG mechanism:

○ 2 bytes markers inserted every n blocks
○ used to decorrelate the DC, to repair block alignment

and a safe start point to start reading whenever an
error is encounter during Huffman decoding

○ If 9 consecutive markers are lost, the decompression
fails

The ZinziPEG markers
● ZinziPEG mechanism:

○ provide DC decorrelation and safe start point (as
JPEG);

○ markers are only 1 byte long (less memory
overhead)

○ The use of both markers and trailers allows stronger
resiliency
■ removed the constraints on the number of

consecutive markers that can get lost

The ZinziPEG decoder
● The ZinziPEG decoder translate the encoded image in

standard JPEG
○ Corrects errors due to noise on the channel (by using the FEC

decoder)
○ Reconstruct the image and add the JPEG standard header
○ “Grey concealment” is performed whenever there is a corrupted block

● The ZinziPEG decoder ALWAYS returns a correct
JPEG image, but of course some of its blocks might be
corrupted (bit-flips on the DCT coefficients) or replaced
with grey ones (grey concealment).

● JPEG might not converge in case of bit flips

Experimental setup
● Comparison between ZinziPEG with standard JPEG

(with markers)
● Experiments on simulated channels with high BERs (i.

e., BER = 5e-2)
● Metrics:

● compressed image size (bytes);
● quality of the received images (SSIM).

Structural SIMilarity index

S-SIM “is a method for measuring the similarity between
two images. The SSIM index can be viewed as a quality
measure of one of the images being compared, provided
the other image is regarded as of perfect quality.”

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error
visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612,
Apr. 2004.

Image size
Low quality:
ZinziPEG might even outperform
JPEG thanks to the reduced
overhead due to header remotion.

Medium quality:
ZinziPEG files are only slightly
bigger than JPEG ones.

High quality:
ZinziPEG requires much more space
than JPEG due to the increased
number of trailers to be sent.

Quality comparison (JPEG)

Quality comparison (ZinziPEG)

Conclusions
● JPEG-like compressed image size
● Huge error resiliency improvement
● Simple implementation, suitable for micro-controllers

based embedded systems
○ Suitable for micro-controllers W/O FPU, since the

integer implementation

